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Instability, intermittency, and multiscaling in discrete growth models of kinetic roughening

C. Dasgupta,* J. M. Kim,† M. Dutta, and S. Das Sarma
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 26 July 1996!

We show by numerical simulations that discretized versions of commonly studied continuum nonlinear
growth equations~such as the Kardar-Parisi-Zhang equation and the Lai–Das Sarma–Villain equation! and
related atomistic models of epitaxial growth have a generic instability in which isolated pillars~or grooves! on
an otherwise flat interface grow in time when their height~or depth! exceeds a critical value. Depending on the
details of the model, the instability found in the discretized version may or may not be present in the truly
continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very
different from that of their continuum counterparts. This instability can be controlled either by the introduction
of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars~or grooves!
by other means. A number of such ‘‘controlled instability’’ models are studied by simulation. For appropriate
choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, char-
acterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is
active. The behavior found in this regime is very similar to the ‘‘turbulent’’ behavior observed in recent
simulations of several one- and two-dimensional atomistic models of epitaxial growth.
@S1063-651X~97!09002-8#

PACS number~s!: 05.70.Ln, 64.60.Ht, 81.10.Aj, 81.15.Hi
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I. INTRODUCTION

In recent years, much attention has been focused on
problem of kinetic surface roughening associated with
nonequilibrium dynamics of growing interfaces@1,2#. A
number of simple models of epitaxial growth have been p
posed and studied@3–9# analytically and numerically, re
vealing a rich variety of interesting phenomena. One s
phenomenon for which no explanation is currently availa
is the multiexponent scaling~‘‘multiscaling’’ in short! of
height fluctuations found@8# in recent simulations@8–10# of
a class of one-dimensional~1D! limited-mobility models of
epitaxial growth. This phenomenon is particularly interest
because it exhibits a striking similarity@8# to the intermittent
multiscaling of velocity fluctuations in fully developed flui
turbulence@11#.

This paper describes the results of a numerical invest
tion of the origin of this interesting multiscaling behavio
Our study shows that the multiscaling found in these mod
is closely related to an instability of discretized versions
commonly studied nonlinear growth equations. In this ins
bility, isolated structures~such as pillars or grooves! on a flat
interface tend to grow in time if the ‘‘size’’ of the structur
~i.e., height of a pillar or depth of a groove! exceeds a critica
value. We show that this instability is the cause of numeri
difficulties encountered in earlier work@12,13# on numerical
integration of discretized growth equations. These difficult
were usually attributed to ‘‘numerical artifacts’’ in previou
studies. In contrast, we show that these numerical difficul
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are the consequence of a genuine instability intrinsic to
discretized growth equations. This instability is found to
‘‘generic’’ to a large class of discretized growth equatio
with nonlinearities. In particular, we find that this instabili
is present in 1D and 2D versions of the conserved fou
order growth equation introduced by Lai and Das Sar
~LD! @4# and by Villain@5#, and also in the 1D Kardar-Paris
Zhang~KPZ! equation@3# with or without noise. Since the
1D continuum KPZ equation without noise, which is exac
solvable via a mapping to the diffusion equation by a Co
Hopf transformation@2#, does nothave any instability, our
results lead to the important conclusion that the behavio
discretized nonlinear growth equations may be very differ
from that of the corresponding truly continuum version
Whether this instability occurs or not during the time evo
tion of a system started from a flat initial state is determin
by the nature of the dynamic scaling exhibited by the syste
We find that this instability is inevitable at sufficiently lon
times in models which exhibit ‘‘anomalous’’ dynamic sca
ing @14# ~provided the system size is sufficiently large
prevent saturation!, whereas models exhibiting convention
scaling show this instability only if the value of a dimensio
less coupling constant~defined below in terms of the value
of the parameters in the original growth equation and
length scale of discretization! exceeds a nonzero critica
value. A similar instability is found in an atomistic model@7#
which is believed to provide an exact discrete representa
of the continuum LD growth equation.

Next, we show that this instability can be controlled b
introducing higher-order nonlinear terms with appropria
coefficients. These higher-order terms cut off the growth
pillars or grooves at large values of the height or depth. T
instability in atomistic growth models can also be controll
by modifying the deposition rule in a way that restricts t
growth of the height of a pillar or the depth of a groove. W
find that such models with controlled instability exhib
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deviations from simple scaling in the time interval durin
which the instability is operative. If the parameter~s! used in
the control of the instability is~are! chosen properly, then th
behavior in this regime is found to be very similar to t
multiscaling observed in simulations@8–10# of atomistic
growth models. The exponents which describe this appr
mate multiscaling behavior are nonuniversal; their values
pend on the way the instability is controlled. The over
picture that emerges from this study is qualitatively simi
to that suggested in the analytic work of Ref.@10#. In par-
ticular, our work suggests that the multiscaling behavior
served@8# in the 1D Das Sarma–Tamborenea~DT! model is
described by the LD equation supplemented by a se
higher-order nonlinear terms with appropriate coefficients

As noted in Ref.@8#, the multiscaling found in simulation
of growth models is very similar to the intermittent mult
fractal behavior observed in fluid turbulence. It is interest
to note in this context that our proposed explanation of m
tiscaling in growth models is conceptually and forma
similar to a recent proposal@15# which suggests that the mu
tiscaling of structure functions in turbulence may be e
plained in terms of singularities occurring on a dense se
space-time points.

The rest of this paper is organized as follows. In Sec.
we define the models considered in our study and the var
correlation functions measured in our simulations to pro
multiscaling behavior. Section III contains a detailed acco
of the instability we find in discretized growth equations a
in an atomistic growth model. In Sec. IV, we describe t
results of simulations of models in which the instability
controlled. The behavior found in these simulations is co
pared and contrasted with the multiscaling behavior obser
in previous simulations of the DT and related models. S
tion V contains a summary of our findings and a discuss
of the implications of our results. A short paper describi
the main results of our study has been submitted for pu
cation @16#.

II. MODELS AND DEFINITIONS

Our work involves detailed numerical studies of two co
tinuum growth equations, namely, the LD equation and
KPZ equation. These equations are studied using direct
merical integration. We have also studied by numeri
simulations an atomistic version of the LD equation intr
duced by Kim and Das Sarma@7#. The LD equation we
consider has the form

]h8~r ,t !/]t52n¹4h81l1¹
2u¹h8u21h~r ,t !, ~1!

whereh8(r ,t) represents the ‘‘height’’ variable at the poin
r at time t, ¹ and ¹2 represent, respectively, the spat
derivative and Laplacian operators ind dimensions~the di-
mension of the substrate!, andh is a Gaussian random nois
with correlations

^h~r ,t !h~r 8,t8!&52Dd~r2r 8!d~ t2t8!. ~2!

The KPZ equation in (d11) dimensions has the form

]h8~r ,t !/]t5n¹2h81l1u¹h8u21h~r ,t !. ~3!
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We numerically integrate these two equations using a sim
Euler scheme@12,17#. To this end, we first define dimension
less variables

x[r /r 0 , t[t/t0 , h[h8/h0 , ~4!

where r 0 , t0, and h0 are appropriately chosen units o
length, time, and height, respectively. We then discretize
space and time by defining the dimensionless discretiza
scaleDx and the integration time stepDt. Using a proper
choice of the unitst0 andh0, Eqs. ~1! and ~3! can then be
represented by the following two update schemes:

hi~t1Dt!2hi~t!5Dt¹̃2@2¹̃2hi~t!1lu¹̃hi~t!u2#

1ADth i8~t!, ~5!

and

hi~t1Dt!2hi~t!5Dt@¹̃2hi~t!1lu¹̃hi~t!u2#

1ADth i8~t!. ~6!

In these equations,hi(t)[h(xi ,t) represents the dimension
less height variable at the lattice pointi at dimensionless
time t, ¹̃, and ¹̃2 are lattice versions of the derivative an
Laplacian operators, andh i8(t) is a random variable with
zero average and variance equal to unity. In most of
calculations, we use the following definitions for the latti
derivatives:

¹̃ j f i50.5@ f ~xi1 jDx!2 f ~xi2 jDx!#, ~7!

¹̃ j
2f i5 f ~xi1 jDx!1 f ~xi2 jDx!22 f ~xi !, ~8!

wherej is an unit vector in thej th direction. In some of our
calculations, we have also used a more accurate repres
tion @18# of the lattice derivatives involving two neighbor
on each side. The dimensionless parameterl appearing in
Eqs.~5! and ~6! has the form

l5A2~a0 / l 0!
~42d!/2, l 0[S n3

l1
2D D 1/~42d!

~9!

for the LD equation and

l5A2~a0 / l 0!
~22d!/2, l 0[S n3

l1
2D D 1/~22d!

~10!

for the KPZ equation. In these equations,a0[r 0Dx is the
discretization scale~lattice spacing! and l 0 is a characteristic
length determined by the parametersn, l1, andD of the
original continuum growth equation. Note that ind 5 1, the
value of l would vanish in the true continuum limit
Dx→0, for both LD and KPZ equations. However, on
should remember that a short-distance cutoff~perhaps of
atomic scale, e.g., the lattice spacing! is present in all physi-
cal situations, and it is not legitimate to use a value ofDx
smaller than this cutoffamin . Therefore, the smallest valu
(lmin) that the coupling constantl can have is
A2(amin / l 0)

3/2 andA2(amin / l 0)
1/2 for the 1D LD and KPZ

equations, respectively.
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55 2237INSTABILITY, INTERMITTENCY, AND . . .
We have also studied an atomistic version@7# of the LD
equation in which the height variables$hi% are integers. The
time evolution of this model is defined by the followin
deposition rule. First, a site~say, i ) is chosen at random
Then the quantity

Ki~$hj%!52¹̃2hi1lu¹̃hi u2 ~11!

is calculated for the sitei and all its nearest neighbors. The
a particle is added to the site that has the smallest valu
K among the sitei and its nearest neighbors. In the case o
tie for the smallest value, the sitei is chosen if it is involved
in the tie; otherwise, one of the sites involved in the tie
chosen randomly. Note that this model also involves o
one dimensionless parameter,l. In this model, ‘‘time’’ is
measured by the number of layers deposited. We call
model the KD model@7# below.

The possibility of multiscaling was investigated in o
simulations by monitoring different moments of the neare
neighbor height difference and the height difference corre
tion function. Following Ref.@8#, we define

sq~t![^@si~t!#q&1/q, si~ t !5uhi11~t!2hi~t!u, ~12!

and

Gq~ l ,t![^uhi1 l~t!2hi~t!uq&1/q, ~13!

where we have used the simplified notati
hi1 l5h(xi1 lDx) for the 1D system. In these equations, t
averagê & represents an average over the site indexi and
different runs corresponding to different realizations of t
random noise. Before saturation~i.e., for t!Lz, whereL is
the size of the system andz is the dynamical exponent!, the
quantities$sq(t)% are expected to show a power-law grow
in time t in models which exhibit anomalous dynamic sc
ing:

sq~t!'taq /z. ~14!

If the exponentaq depends on the value ofq, then the model
is said to exhibit multiscaling. Thus, whether multiscaling
present or not can be easily tested by monitoring the ra
sq(t)/s1(t), q52,3, . . . as functions of time. The heigh
difference correlation functionsGq are expected to behave a

Gq~ l ,t!'u l uzq, 1! l!j~t!'t1/z. ~15!

Again, multiscaling, characterized by a dependence of
exponentszq on q, can be tested by looking at thel depen-
dence of the ratiosGq( l )/G1( l ), q52,3, etc. In our work,
we consider the first four moments,q 5 1, 2, 3, and 4. We
follow the notation of Ref.@8#, in contrast to the notation o
Ref. @9#, throughout this paper.

III. INSTABILITY IN DISCRETE GROWTH EQUATIONS

In this section, we describe in detail the numerical cal
lations which lead to the conclusion that a generic instabi
is present in the discretized growth equations defined in
preceding section. We first studied the behavior of the
LD equation, Eq.~5!, for small values of the paramete
l (l<2). In these runs, the system was started from a p
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fectly flat state and its time evolution was simulated by in
grating the growth equations forward in time. Typical valu
of the parameters used in the simulation are system
L5103, time step Dt 5 0.01, and maximum time
tmax5104. The results were averaged over 10–50 indep
dent runs. In these runs for small values ofl, we find good
agreement with the predictions of dynamical renormalizat
group ~DRG! calculations@4,19# and no evidence of multi-
scaling. In particular, the exponentb that describes the
growth of the root mean square~rms! interface widthW with
time is found to have a value (. 0.34! which is close to the
DRG result, b51/3. We also find that the exponen
$aq /z% are essentially independent ofq and have a value
close to zero~in the range 0.06–0.08!, possibly indicating a
logarithmic growth in time. Typical results obtained fo
l51.0 are shown in Fig. 1. As shown in the inset of th
figure, the quantities$Gq( l )% also do not show any indica
tion of multiscaling. The exponents$zq% have values in the
range 0.8–0.9, and are independent ofq within error bars.
The results obtained from simulations of the KD model f
such small values ofl are very similar to those describe
above. Results obtained forl50.5 are shown in Fig. 2. The
exponents calculated from the time dependence ofW and
sq are, respectively,b.0.345 andaq /z.0.085 for all q.
The behavior of the functions$Gq( l )%, shown in the inset of
Fig. 2, indicates single-exponent scaling withzq.0.9 for all
q.

The behavior observed for higher values ofl is quite
different. In this case, the system exhibits the expected c
ventional scaling behavior at short times. However, an
parent ‘‘singularity,’’ indicated by a rapid growth of th
height variable, is found to occur at longer times. It is im
possible to follow numerically the evolution of the syste
beyond the time at which this singularity occurs: attempts

FIG. 1. The rms interface widthW and the momentssq ,
q51,4, of the nearest-neighbor height difference~see text! as func-
tions of timet for the 1D discretized LD equation withl 5 1.0.
The data shown were obtained for a system withL5104, using an
integration time stepDt 5 0.01. Inset: the height-difference corre
lation functionsGq( l ), q 5 1,4, ~see text! as functions of the sepa
ration l for this system at timet 5 104.
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do so lead to ‘‘overflow’’ on the computer. This instabilit
was first observed by Tu@12#; our results are quite similar to
those reported by him. The time at which this instabil
occurs shows large run-to-run variations, with the aver
value decreasing with increasingl. A similar instability is
found in the KD model. Since the height variable in th
atomistic model can increase by only one unit at a time, th
is no divergence here. The instability in this model shows
as a rapid increase of the interface width which correspo
to a changeover from a power-law growth with an expon
close to 1/3 to a linear growth in time. The results obtain
from a simulation of the KD model withl51.0 are shown in
Fig. 3. The occurrence of an instability neart5100 is clearly
seen in the figure. It is interesting to note that the behavio
W and $sq% before the occurrence of the instability is ve
similar to that found in simulations for small values ofl ~see
Fig. 2!. The occurrence of this instability was reported
Ref. @7#. Thus, the observation of these instabilities is n
new. Our results are about the origin of this instability, t
apparently ‘‘generic’’ nature of this instability~in the sense
that it appears to be present in discretized versions of o
commonly studied nonlinear growth equations such as
KPZ equation!, and the role it plays in the multiscaling phe
nomena observed@8–10# in simulations of atomistic growth
models.

We carried out a detailed investigation of the origin
this instability in the discretized LD equation and the K
model and found that this instability is caused by the grow
of isolated structures, such as pillars and grooves, on a
interface. Either pillars or grooves are unstable in a particu
system; which one is unstable is determined by the sign
l. This asymmetry between pillars and grooves results fr
the fact that the growth equations we consider are not inv
ant underh→2h. We find that pillars with heights exceed
ing a certain ‘‘critical’’ value~which depends on the value o

FIG. 2. The rms interface widthW and the momentssq ,
q51,4, of the nearest-neighbor height difference as functions
time t for the 1D KD model withl 5 0.5. The data shown repre
sent an average over 10 runs on systems withL5104. Inset: the
height-difference correlation functionsGq( l ), q 5 1,4, as func-
tions of the separationl for this system at timet5104.
e
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l; see below! grow in time in both the LD equation and th
KD model with positivel. It is easy to show that in the
absence of noise (h8 5 0!, an isolated pillar of heighth0 will
initially grow in time if h0.10/l. Consider an initial con-
figuration in which all sites except the central one ha
hi50 and the central site has a heighth0.0 ~a negative
value ofh0 would correspond to a groove at the center!. The
initial value of time derivative of the height at the central s
is easily evaluated from Eq.~5! to be26h01lh0

2/2. Simi-
larly, the initial time derivative of the height at one o
nearest-neighboring sites of the central one is obtained to
4h02lh0

2/2. Clearly, the rate at which the difference b
tween the heights at the central site and at one of its nea
neighboring sites initially changes with time is positive~i.e.,
the height of the pillar increases initially! if h0.10/l. No
analytic method is available for following the evolution o
this state for longer times or for taking into account the
fects of the stochastic noiseh8. We therefore do this numeri
cally and check at regular time intervals whether the near
neighbor height difference at the central site~defined as the
larger of the two height differences on the two sides! exceeds
h0 or not. By repeating this procedure a large number
times, we are able to calculate the probabilityP(t) of the
nearest-neighbor height difference at the center excee
the initial valueh0 at a later timet. The results of such a
study ~for L5100, l51.0, Dt50.01, 2000 independen
runs! are shown in Fig. 4. The probability of height increa
is found to be very close to zero for small values ofh0. The
growth probability begins to be nonzero as the value ofh0
exceeds 10/l. For values ofh0 which are slightly higher than
10/l, the growth probability is initially close to unity, but i
decreases rather quickly to zero~see the data forh0 5 14 and
17 in Fig. 4!, indicating that the height eventually decreas
after an initial increase. The rate of the initial growth of th
height and the length of the time interval over which t
height remains greater thanh0 increase withh0. As h0 is
increased further, we encounter the instability mention

f

FIG. 3. The rms interface widthW and the momentssq ,
q51,4, of the nearest-neighbor height difference as functions
time t for the 1D KD model withl 5 1.0. The data shown repre
sent an average over 10 runs on systems withL5104.
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55 2239INSTABILITY, INTERMITTENCY, AND . . .
above. The height differences near the center grow very
idly, leading to overflow on the computer. To avoid th
problem, we stop the simulation of the time evolution wh
the maximum value of the nearest-neighbor height differe
exceeds a preassigned cutoff value. This cutoff was cho
to be 1000 for the data shown in Fig. 4. The results
insensitive to the value of this cutoff as long as it is large.
all runs stopped in this way, the nearest-neighbor height
ference at the central site is found to be larger thanh0 when
the run is stopped. These runs are counted as ones in w
the nearest-neighbor height difference at the center wo
remain greater thanh0 at later times. In fact, the large valu
of the probability att 5 1 for h0 5 20 ~see Fig. 4! arises
exclusively from such runs. In other words, the height d
ference at the center becomes smaller thanh0 within a short
time if the height differences do not exceed the cutoff va
during the time evolution of the system. This observat
and the results of a rigorous analysis@20# of the LD equation
without noise suggest that the instability described abov
not a true finite-time singularity: the height of the pilla
eventually decreases after reaching a large but finite va
Here, we do not address the issue of occurrence of a fin
time singularity in this model because it is virtually impo
sible to determine numerically whether a true divergence
the height occurs or not. This question is not crucial to o
study: as described in Sec. IV, our main results are deri
from models in which the growth of the height difference
cut off at a finite value.

As shown in Fig. 4, the probability of growth becom
essentially independent of time neart 5 1. Figure 5 shows
how the probability att 5 1 depends on the value ofh0. We
show data obtained using three different values, 0.01, 0.0
and 0.0001, of the time stepDt. The observation that the
results obtained for these three very different values ofDt
are nearly identical shows that this instability is not a n
merical artifact of not using a sufficiently small value of th
time step. From data of this kind, we define a ‘‘critica
height hc for which the probability of growth is 0.5. Ou
results indicate that the dependence ofhc onl is of the form

hc~l!.A/l ~16!

FIG. 4. Growth probability~see text! of a pillar in the 1D dis-
cretized LD equation (l51.0, Dt 5 0.01, 2000 runs onL 5 100
samples! as a function of timet. Results for three different values
14, 17, and 20, of the initial heighth0 are shown.
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with A. 20.0 for the LD equation. Our numerical results f
the values ofhc are shown in Fig. 6. The proportionality o
hc to 1/l may be understood from a simple dimension
argument. For a configuration in which the height variable
h0 at the central site and zero everywhere, the first term
the right-hand side of Eq.~5!, which tends to stabilize the
system, is proportional toh0 at the central site and its neare
neighbors. The second term on the right-hand side of Eq.~5!,
which is the one responsible for the instability, is propo
tional tolh0

2. It is, therefore, obvious that the value ofh0 at
which the destabilizing term wins over the stabilizing o
should be proportional to 1/l. The value of the coefficient o
proportionalityA is nontrivial and has to be determined n
merically. We have also carried out similar calculations u
ing a more accurate, five-point definition@18# of the lattice
derivatives. We find very similar behavior, with a value
the parameterA which is smaller than 20. This observation
indicates that the behavior described above is not an art
of using overly simple expressions for the lattice derivativ

FIG. 5. Growth probability of a pillar of initial heighth0 in the
1D discretized LD equation (l 5 1.0, 2000 runs onL 5 100
samples! at time t 5 1 as a function ofh0, calculated with three
different values, 0.01, 0.001, and 0.0001, of the integration ti
stepDt.

FIG. 6. The dependence ofhc , the critical height of a pillar~or
the depth of a groove, see text!, on the coupling constantl in the
discretized LD equation in one and two dimensions and the
cretized KPZ equation in one dimension. The results shown w
obtained from numerical integrations withDt 5 0.01. The solid
lines are the best fits to the formhc(l)5A/l.
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The development of the instability induced in the d
cretized 1D LD equation by the presence of a high pillar
the initial state is illustrated in Fig. 7, where we show t
height profiles at timest 5 0.05, 0.1, 0.15, and 0.17, ob
tained by integrating the discretized LD equati
(L5100, l51.0, Dt51024) from an initial state in which
the height is zero everywhere except at the central site w
the height ish0 5 25. This value ofh0 is higher than the
critical heighthc for the value ofl used. As expected, th
height of the pillar at the center grows rapidly in time. At th
same time, alternate grooves and pillars form on both s
of the initial pillar and these grooves~pillars! become higher
~deeper! as time progresses. The formation of these groo
and pillars is a consequence of the conservation law b
into the LD equation. In the run depicted in Fig. 7, the ma
mum value of the nearest-neighbor height difference
ceeded the cutoff of 1000 at timet 5 0.2.

Very similar results are obtained for the atomistic K
model. A little algebra, similar to that described abov
shows that in this model, an attempt to deposit a ‘‘particl
at the site of a pillar of initial heighth0 or at one of its
nearest-neighboring sites leads to an increase in the heig
the pillar if h0.12/l. Our simulations~which are exact be-
cause all variables in this model are discrete! show that the
height of a pillar continues to grow linearly in time if it
initial value is somewhat larger than 12/l. The development
of the instability in this model is very similar to that show
in Fig. 7 for the discretized LD equation.

The instability described above appears to be generi
discretized versions of all commonly studied growth eq
tions containing nonlinear terms. In particular, we ha
found very similar results for two other systems: the L
equation in ~211! dimensions and the KPZ equation
~111! dimensions. All the qualitative features of the inst
bility found in the 1D LD equation appear to be the pres
in two dimensions. Pillars of initial heighth0 become un-
stable in the 2D LD equation with positivel if h0.hc(l).

FIG. 7. Development of the instability induced in the 1D d
cretized LD equation (l 5 1.0! by the presence of a pillar of initia
heighth0 5 25. Interface profiles at timest 5 0.05, 0.1, 0.15, and
0.17, obtained for aL 5 100 system usingDt51024, are shown.
In the initial state, the height is zero everywhere except at the 5
site, where the height ish0.
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The dependence ofhc on l is well-described by
hc(l).A/l with A. 31 ~see Fig. 6!.

The instability in the discretized KPZ equation, Eq.~6!, in
one dimension withl.0 is associated with grooves, no
pillars. We have studied the 1D KPZ equation with and wi
out noise and found the instability to be very similar in t
two cases. The critical value ofh0 ~the depth of an isolated
groove! in the KPZ equation is determined using a proced
similar to the one described above for the LD equation. T
instability criterion we use for the KPZ equation is slight
different from the one described above. We define the pr
ability of occurrence of an instability as the ratio between
number of runs in which the maximum nearest-neighb
height difference exceeds a preassigned cutoff value~taken
to be 1000 in our simulations! and the total number of runs
As noted above, this instability criterion coincides with th
criterion of the value of the nearest-neighbor height diff
ence at the central site exceedingh0 in the LD equation. This
is not so in the 1D KPZ equation. In some of the runs,
find that the value of the nearest-neighbor height differe
at the central site is smaller thanh0 when the maximum
value of the nearest-neighbor height difference reaches
cutoff. Evidently, the presence of a deep groove in the ini
state induces the formation of large height differences
points which do not always coincide with the initial locatio
of the groove. The development of the instability in the 1d
discretized KPZ equation is shown in Fig. 8. The grow
profiles shown for timest 5 0.1, 0.3, and 0.5 are obtaine
for aL 5 100 system withl 5 1.0, using an integration time
stepDt51024. The initial state is one in which the height
zero everywhere except at the central site where there
groove of depth 30. As can be seen in Fig. 8, the groove
the center becomes deeper initially, but subsequently de
ops into a ‘‘mound’’ with large values of the neares
neighbor height difference occurring at many points near
center. This is the reason why the maximum value of
nearest-neighbor height difference does not always occu

th

FIG. 8. Development of the instability induced in the 1D di
cretized KPZ equation (l 5 1.0! by the presence of a groove o
initial depthh0 5 30. Interface profiles at timest 5 0.1, 0.3, and
0.5, obtained for aL 5 100 system usingDt51024, are shown. In
the initial state, the height is zero everywhere except at the 5
site, where the height is2h0.
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55 2241INSTABILITY, INTERMITTENCY, AND . . .
the central site in this system. A comparison of Fig. 8 w
Fig. 7 clearly illustrates the important effects of a conser
tion law ~which is present in the LD equation, but absent
the KPZ equation! on the growth kinetics. The value of th
maximum nearest-neighbor height difference was found
exceed the cutoff of 1000 att 5 2.7 in the run for which the
results are shown in Fig. 8.

Typical results for the probability of occurrence of a
instability in the 1D KPZ equation (l51.0, L5100,
Dt50.01, 2000 runs! are shown in Fig. 9 for three differen
values ofh0. As before, we definehc to be the value ofh0 at
which the long-time value of the probability of instabilit
reaches 0.5. The dependence ofhc calculated in this way on
the value ofl is shown in Fig. 6. As expected, we fin
hc(l).A/l with A. 25.0. The values ofhc shown in Fig. 6
were obtained from numerical integrations using a time s
Dt 50.01. We have repeated these calculations us
smaller values ofDt. The observed dependence of the c
culated value ofhc on Dt is more pronounced than tha
shown in Fig. 5 for the 1D LD equation. However, any re
sonable extrapolation of the results obtained for differ
values ofDt to theDt→0 limit yields results forhc which
are not significantly different from those shown in Fig. 6. W
have also checked directly the occurrence of the instabilit
the 1D discretized KPZ equation without noise for initi
conditions containing a deep groove for values ofDt down
to 1027.

Our conclusion about the existence of an instability in
discretized version of the noiseless 1D KPZ equation m
appear surprising in view of the well-known fact that t
continuum KPZ equation without noise in one dimensi
does nothave any instability. The continuum equation can
mapped to a simple linear diffusion equation by a Cole-H
transformation and solved exactly. For any bounded ini
condition, the asymptotic solution is one in which the heig
variable is constant. The absence of any instability in
continuum equation, however,does not necessarilyimply
that the discretized version, Eq.~6!, should also be stable fo
any initial condition. This is because the application of
Cole-Hopf transformation to the discretized version@cf. Eq.
~6!# of the KPZ equationdoes notreduce it to a discretized

FIG. 9. Probability of instability~see text! induced by a groove
of initial depthh0 in the 1D discretized KPZ equation (l 5 1.0,
2000 runs withDt 5 0.01 onL 5 100 samples! as a function of
time t. Results for three different values, 24, 25, and 26, of
initial heighth0 are shown.
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version of the linear diffusion equation. The reason for t
difference is simple: the algebra of derivatives does not
ply to difference operators if the nearest-neighbor height
ferences are not vanishingly small. For this reason, the e
results available for the continuum equation do not in a
way rule out the possibility of occurrence of an instability
the discretized equation for initial conditions with larg
nearest-neighbor height differences. Conclusions very s
lar to ours about the occurrence of an instability in the 1D
discretized noiseless KPZ equation have recently been
tained independently by Newman and Bray@21#.

It is interesting to note that instabilities in numerical int
grations of the discretized KPZ equation in one and hig
dimensions were noted in previous studies@13#. These stud-
ies, however, attributed the observed instability to ‘‘nume
cal artifacts,’’ with the implicit assumption that the instab
ity would disappear if a sufficiently small value of th
integration time stepDt were used. Our work shows that th
instability found in these studies is an intrinsic property
the discretized equation whichcannotbe eliminated simply
by using a sufficiently small value ofDt. The observation of
an instability in the discrete version of the noiseless K
equation in one dimension brings out another important po
which, to our knowledge, has not been noted in the exist
literature, namely, the behavior of discretized versions
nonlinear growth equations may, under certain circu
stances, be very different from the behavior of their co
tinuum counterparts. These observations have several im
tant implications in the study of growth equations.
particular, one important and inevitable implication is th
the discrete version of a nonlinear continuum growth eq
tion may, in principle, belong to a universality class which
different from the universality class of the continuum equ
tion. A full discussion of these implications is provided
Sec. V.

So far, we have considered the time evolution of the d
cretized growth equations from an initial state in which
pillar or groove is present. A question of obvious importan
is whether such structures are spontaneously generated
ing the evolution of the system from a flat initial state. T
answer to this question is crucially related to the nature
dynamic scaling exhibited by the model under considerati
In systems which exhibit normal scaling, the neare
neighbor height difference is not expected to grow inde
nitely in time; it should saturate quickly after an initia
growth. Such a system would spontaneously exhibit the
stability discussed above only if the value at which the ma
mum nearest-neighbor height differencesmax saturates is
higher than~or at least, close to! the critical value,hc , de-
fined above. Sincehc decreases while the saturation value
smax generally increases withl, we can define a nonzer
‘‘critical’’ value, lc , of l at which these two quantities be
come equal. According to the discussion above, systems
values ofl substantially smaller thanlc are not expected to
show the instability during their time evolution from a fla
state. In contrast, since nearest-neighbor height differen
are expected to continue growing in time in models wh
exhibit anomalous scaling, such systems should always s
the instability at sufficiently long times, provided the syste
size is large enough to prevent saturation before the onse
the instability. In other words,lc is expected to be zero fo

e
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2242 55C. DASGUPTA, J. M. KIM, M. DUTTA, AND S. DAS SARMA
models with anomalous scaling. This conclusion is differ
from that of Tu @12#, who interpreted his numerical resul
for the discretized 1D LD equation as evidence for the ex
ence of a nonzerolc in this system.

Our numerical results fully support these general conc
sions. In Fig. 10, we show the time dependence ofsmax, the
maximum value of the nearest-neighbor height difference
eraged over a large number of runs starting from a flat st
The system parameters areL51000, Dt50.01, l54.0 for
the 1D LD equation; system size5 2003200, Dt
50.01, l55.0 for the 2D LD equation; and
L5104, Dt50.01, l55.0 for the 1D KPZ equation. A
larger value ofL is needed for avoiding saturation in th
KPZ equation because the value ofz for this model is
smaller. The quantitysmax is defined in the following way
for the 2D system:

smax[max$si%;
~17!

si[$@h~xi1 iDx!2h~xi !#
21@h~xi1 jDx!2h~xi !#

2%1/2.

The data shown were averaged over 200, 30, and 200
for the ~111! LD, ~211! LD, and ~111! KPZ equations,
respectively. As expected,smax saturates quickly for the las
two models, which are expected to exhibit normal scal
behavior. In contrast,smax continues to grow in time in the
1D LD equation, which is expected to show anomalous s
ing. The growth ofsmax in time in this model is well-
described by a logarithmic form

smax~t!'a1blnt, ~18!

where the parameterb is numerically found to be propor
tional to l. This logarithmic dependence ofsmax on t is
consistent with predictions of dynamical renormalizati
group calculations@4,19#.

Figure 11 shows our numerical results fort ins , the time
at which the instability occurs when the system evolves fr
a flat initial state, for 1D LD and KPZ equations. We ope

FIG. 10. Time dependence of the maximum nearest-neigh
height difference smax in the 1D discretized LD equation
(l54, Dt50.01, L 5 1000, 200 runs!, the 2D discretized LD
equation (l55, Dt 5 0.01, system size5 2003200, 30 runs! and
the 1D discretized KPZ equation (l55, Dt50.01, L5104, 200
runs!. The solid line is a fit of the data for the 1D LD equation
the formsmax(t)5a1blnt.
t
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tionally definet ins as the time at whichsmax reaches a cutoff
value which is set at 1000. The instability time shows ve
large run-to-run variations, and we find it more appropria
to average lntins, rather thant ins itself, over different runs.
So, the data shown in Fig. 11 actually correspond
exp(̂ lntins&). The data for the LD equation were obtained f
L51000, Dt50.01, and averaged over 150, 200, 50
1000, and 1000 independent runs forl 5 3, 4, 5, 6, and 7,
respectively. From the results of Eqs.~16! and~18!, and the
fact that the coefficientb of Eq. ~18! is proportional tol, it
is easy to show that the dependence oft ins on l in this
model should given byt ins'eB/l

2
. As shown in Fig. 11, this

form does provide a good description of the numerical d
for small values ofl. The fact that the values oft ins for l
56 and 7 are lower than those predicted by the fit to the d
for smallerl may be understood by noting that the initi
growth ofsmaxwith time is faster than that described by E
~18!.

The data shown for the 1D KPZ equation were obtain
for L5104, Dt50.01, and averaged over 200 runs. In 1
runs of length 104 units, we did not find any occurrence o
instability for l 5 4. From the observation that the distribu
tion of t ins has a long tail that extends to values mu
smaller than the average, we can derive a conservative lo
limit of 106 units for the average instability time forl 5 4.
This is indicated by the arrow in Fig. 11. These resu
strongly suggest that the value oflc lies between 4 and 5 in
this system. Consequently, the instability in this system m
be avoided by choosing a small discretization scaleDx, one
which would make the value ofl smaller thanlc . However,
as noted before, the value ofl in a real system can not b
made arbitrarily small, and the instability can not be avoid
if the ‘‘bare’’ parameters are such thatlmin.lc .

It should be mentioned that the above discussion ab
the possibility of occurrence of an instability in a syste
started from a flat initial state is qualitative because it
based on a criterion that involves theaveragevalue of the

or FIG. 11. The average instability timet ins ~see text! as a function
of l for the 1D discretized LD equation (L51000, Dt 5 0.01,
number of runs5 150, 200, 500, 1000, 1000 forl 5 3, 4, 5, 6, 7,
respectively! and the 1D discretized KPZ equation (L5104, Dt
50.01, 200 runs for each value ofl). The arrow indicates a lowe
bound fort ins for the KPZ equation withl 5 4. The solid line is a
fit of the LD equation data forl 5 4, 5, and 6 to the form

t ins5AeB/l
2
.
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55 2243INSTABILITY, INTERMITTENCY, AND . . .
nearest-neighbor height differencesmax. Our simulations
show that the value ofsmax at a particular timet exhibits
large run-to-run variations. The distribution ofsmax shows a
long tail extending to values substantially higher than
average value. This variation in the value ofsmax is the main
reason for the large fluctuations in the calculated value
t ins . Since an instability is expected to occur whenever
value ofs exceedshc , a system with a value ofl which is
lower than thelc defined above in terms of the avera
value ofsmaxwould exhibit the instability if a large value o
s lying in the tail of the distribution happens to be genera
during the time evolution. Since the tail of the distribution
more likely to be sampled if the system size is large and
the simulation is continued for long times, the probability
occurrence of an instability in a system withl,lc would
increase with system size and simulation time. These con
erations show that a precise definition oflc is problematic.
All we can say with certainty is that for sample sizes a
simulation times used in typical numerical integrations
growth equations starting from a perfectly flat state, an ins
bility would be very unlikely in a system exhibiting conven
tional ~rather than anomalous! dynamic scaling if the value
of l is significantly smaller than the critical valuelc defined
above. As discussed above, the results of our numerica
vestigation of the time of instability are quite consistent w
this prediction.

We also note that the distinction we make between m
els with lc 5 0 ~e.g., the 1D LD equation! and those with
lc.0 ~e.g., the KPZ equation and the 2D LD equation! is
appropriate only when one considers the evolution of
system from a flat initial state. Models with nonzero valu
of lc would show the instability~even if the value ofl is
smaller thanlc) if the initial state has a sufficiently high
pillar or a sufficiently deep groove@i.e., if h0.hc(l), which
is finite for any nonzero value ofl#. If the LD and KPZ
equations are indeed the appropriate continuum descript
of epitaxial growth, as is currently believed@1,2# to be the
case, then our finding of this generic instability for growth
a substrate with a high pillar or groove may have import
implications for real growth on patterned substrates, whic
a subject of considerable current interest in materials scie

IV. CONTROLLED INSTABILITY AND MULTISCALING

In this section, we describe in detail our numerical inve
tigation of the connection between the instability describ
in the preceding section and multiscaling behavior. The
istence of such a connection was suggested by the follow
observation made in our numerical studies of the discreti
LD equation and the KD model in one dimension. We fou
evidence for multiscaling~as indicated by the observed tim
dependence of the ratiossq /s1) during a short interval of
time immediately preceding the instability. During this tim
interval, the interface width shows the expected scaling
havior, but the functions$sq% appear to scale with differen
powers, the growth in time being faster for larger values
q. This observation suggests that multiscaling behavior m
be closely related to this instability. We, therefore, carr
out a detailed investigation of this aspect.

It is easy to see that the instability described above wo
in general, lead to deviations from single-exponent sca
e
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for the quantities$sq%. When the instability sets in, the valu
of the nearest-neighbor height differences at the point of
instability becomes large and it grows rapidly in time. Sin
higher moments ofs ~i.e.,sq for largeq) are more sensitive
to such large values ofs, the growth ofsq in time would be
faster for larger values ofq. The instability would also pro-
duce a long tail extending to large values in the distribut
of s, leading to departures from single-exponent scaling
the correlation functions$Gq%. As mentioned above, we d
find approximate multiscaling in our simulations near t
onset of the instability. Typical data, obtained for the L
equation (L5103, l54.0, 100 runs! in one dimension, are
shown in Fig. 12. The growth of the ratiosq /s1 with time is
clearly seen, especially for large values ofq. We have shown
data only up tot 5 100 because the instability is encou
tered at longer times and the time evolution of the syst
cannot be followed beyond the instability. Thus, the tim
interval over which multiscaling is observed in the syste
considered so far is very short. This is because the instab
in these systems is very ‘‘strong’’ in the following sense.
the discretized growth equations, the time evolution of
system cannot be followed numerically beyond the insta
ity time because the height variables become too large. In
atomistic KD model, the height variables increase so f
after the onset of the instability that global variables such
the width of the interface begin to show deviations fro
scaling ~see, for example, Fig. 3!. In order to explain the
numerical results obtained in Refs.@8–10#, it is necessary to
have a situation in which the global variables scale in a n
mal way, whereas the quantities$sq% and$Gq% show anoma-
lous multiscaling. The discussion above suggests that su
situation may be realized if the instability is ‘‘controlled’’ in
some way. We have considered two different classes of m
els with controlled instability. In models of the first class, t
instability is controlled by the introduction of terms wit
higher powers of the gradient of the height variable w
appropriate coefficients. The second class consists of at
istic models in which the instability is controlled by modify
ing the deposition rule in a way that restricts the develo

FIG. 12. The ratiossq(t)/s1(t), q 5 2, 3, 4, and 5, as func-
tions of time t for the 1D discretized LD equation with
l54.0, L51000, Dt 5 0.01, averaged over 100 runs. The o
served growth of the values of these ratios with time indicates
viations from single-exponent scaling.
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2244 55C. DASGUPTA, J. M. KIM, M. DUTTA, AND S. DAS SARMA
ment of large values of the nearest-neighbor hei
difference. These models and the results obtained from
merical studies of their behavior are described below.
emphasize that there is no unique way to control the gro
instability, and, in principle, there must be infinitely man
different ways to do it. We have tried several simple tec
niques of controlling the instability using minimal number
parameters, as described in the next two subsections. In
eral, for a given atomistic growth model~e.g., the DT
model!, the instability may be controlled in an unknown an
necessarily nonuniversal manner.

A. Controlled instability models with higher powers
of the gradient

The models we consider in this section are obtained
replacing theu¹̃hi u2 term appearing in Eqs.~5! and ~11! by
f (u¹̃hi u2), where f is the following nonlinear function:

f ~x![~12e2cx!/c. ~19!

In the equation above,c is an adjustable parameter. Note th
this replacement corresponds to the introduction of an i
nite number of higher-order nonlinear terms of the fo
u¹̃hi u2n with specific coefficients which depend on the val
of c. In the following, we call this modified version of th
discretized LD equation thecontrolled Lai–Das Sarma
~CLD! model and the modified version of the KD model
referred to as thecontrolled Kim–Das Sarma~CKD! model.
The functionf (x) behaves asx for x!1/c and approaches
constant value, 1/c, in the limit x@1/c. It is easy to show
that the growth instability of isolated pillars found in th
original LD equation and the KD model is completely su
pressed if the value ofc is higher than a critical value which
depends on the value ofl. For values ofc smaller than this
critical value, the instability occurs for an isolated pillar if i
height lies within a rangehmin(l,c),h0,hmax(l,c). This
is shown in Fig. 13, where we have plotted the quantity

FIG. 13. The dependence of the quantityD, which measures the
initial rate of growth of the height of an isolated pillar in the 1
CLD model without noise, onh0, the initial height of the pillar. The
results shown are forl 5 4.0 and three different values, 0.02, 0.0
and 0.3, of the control parameterc ~see text!.
t
u-
e
th

-

en-
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t
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D~h0![
d

dt
@hn2hn21# ~20!

for the noiseless CLD model for a state with a pillar
height h0 at the nth site ~i.e., for a configuration with
hi5h0 for i5n andhi50 for all otheri ). The results shown
are for l 5 4.0 and three different values of the contr
parameterc. A positive value ofD implies that the pillar
initially grows in time. As discussed in the preceding sectio
an initial growth of the height of a pillar is a necessary~but
not sufficient! condition for the occurrence of the instability
It is clear from the figure that there is no instability fo
c50.3, while the model would exhibit an instability for va
ues ofh0 lying within a limited range forc 5 0.05 and 0.02.
The range ofh0 values for which the instability is expecte
to occur clearly becomes wider as the value ofc is de-
creased. Simulations carried out for the CLD model w
noise show an essentially similar behavior. The CKD mo
also behaves in a very similar way. Figure 14 shows
probability of growth of an isolated pillar of initial heigh
h0 in the CKD model withl 5 2.0 andc 5 0.02. The
growth probability is defined as before as the fraction of ru
in which the nearest-neighbor height difference at the site
the pillar exceedsh0. The growth probability is found to be
close to zero at all times forh0 5 5 andh0 5 45, indicating
that these values are, respectively, lower thanhmin and
higher thanhmax. For h0 5 25, on the other hand, th
growth probability increases quickly to a value close to un
and then falls off at long times. Thus, the instability for lar
value ofh0 is controlled in the new models by the introdu
tion of an infinite series of higher powers of the derivati
with appropriate coefficients. This is physically reasona
because terms involving higher powers of the derivative
expected to come into the picture when the derivative its
becomes large.

We have studied numerically the behavior of both CL
and CKD models for different values ofl and c. The nu-
merical divergence found in the original discretized L
equation disappears completely for any nonzero value oc.
This result confirms that the instability we found in the orig
nal LD equation is a genuine one, not an artifact of o
numerics. The behavior we find in these two models

FIG. 14. The probability of growth of an isolated pillar in th
1D CKD model (l52.0, c 5 0.02! as a function of time. These
data were obtained from 2000 runs on samples withL 5 100.
Results for three different values, 5.0, 25.0, and 45.0, of the in
heighth0 are shown.
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55 2245INSTABILITY, INTERMITTENCY, AND . . .
qualitatively very similar. For values ofc which are so large
that the instability is completely absent, we find conventio
scaling with exponents close to the expected values. For
small values ofc, the instability is very ‘‘strong’’ and we
find deviations from scaling for global quantities such as
interface width. Typical results are shown in Fig. 15, whe
we have shown the time dependence of the interface w
W for the CLD model (L5103, l54.0) with two values of
c ~10 runs forc 5 0.02 and 40 runs forc 5 0.05!, and for
the CKD model (L 5 103, l 5 2.0!, also with two different
values ofc (c 5 0.02, 200 runs andc 5 0.005, 10 runs!. In
both models, the results for the larger value ofc show the
expected power-law scaling in time, whereas the data for
smaller value ofc exhibit a ‘‘strong’’ instability at which the
scaling behavior ofW breaks down. It is interesting to not
that the growth ofW before the occurrence of the break
the curves for the smaller values ofc is almost indistinguish-
able from that seen for the larger values ofc for which the
power-law growth continues until long times. Thus, the sc
ing behavior ofW even in the ‘‘strongly’’ unstable situation
mimics the ordinary power-law growth up to the instabili
onset time which may be very long, depending on the val
of the parameters in the model. As noted in Sec. III, sim
results were obtained for the original~uncontrolled! models
also. The plots in Fig. 15 show explicitly the similarity b
tween the behavior of the two models. We describe be
results obtained for the atomistic CKD model because sim
lations of this model are easier, so that better statistics ca
obtained. Very similar results, but with poorer statistic
were obtained for the CLD model.

Interesting behavior is found in simulations of the CK
model with intermediate values ofc for which the instability
occurs for a limited range of values ofh0. For such values of
c, the instability is expected to be operative over a limit
time interval. At very early times, the values ofs are small
and no instability occurs. As time progresses, the instab
sets in when the value ofsmax crosseshmin . The value of
s at the point of instability grows rapidly in time until th
growth is cutoff athmax. At subsequent times, the instabilit

FIG. 15. The rms interface widthW as a function of timet for
the 1D CLD model (l54.0, L51000, Dt 5 0.01! with two val-
ues ofc ~10 runs forc 5 0.02 and 40 runs forc 5 0.05!, and for
the 1D CKD model (l52.0, L 5 1000! with two values ofc ~200
runs forc 5 0.02 and 10 runs forc 5 0.005!.
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occurs at more and more points in the system. The numbe
points at which a fresh instability can occur decreases in
process. Also, effects of the instability become less p
nounced at long times because the typical value ofs, which
increases with time even if there is no instability, becom
comparable tohmax at sufficiently long times. So, the insta
bility is expected to become ineffective at long times. If mu
tiscaling arises due to the instability, then one expects to
multiscaling only during the finite-time interval over whic
the instability is active. This is precisely the behavior we fi
in the simulations. In Figs. 16 and 17, we show a repres
tative set of simulation results obtained fo
L51000, l52.0, andc 5 0.02, averaged over 2000 run
For these values ofl andc, hmin. 6.0 andhmax. 34.0. As
shown in Fig. 16, the rms interface widthW shows excellent
scaling with an exponent close to 1/3. The quantities$sq%,
however, show clear evidence of multiscaling during t
time interval betweent' 5 andt' 1000. Power-law fits to
the data over this time interval yield the following values f
the effective exponents:a1 /z50.1460.02, a2 /z50.17
60.02, a3 /z50.2260.02, a4 /z50.2660.03. These ex-
ponent values are similar to those found in Ref.@8# for the
1D DT model. As shown in the inset of Fig. 16, where w
have plotted the time dependence of the ratiossq /s1 for q
5 2, 3, and 4, the multiscaling is not present at very ea
times and also at times longer than about 1000. By moni
ing the time development ofsmax, we find thatt'1000 is
precisely the time at which the instability begins to level o
We have carried out much longer runs for smaller samp
and found that multiscaling of$sq% is absent for all
t. 1000.

In Fig. 17 we have plotted the correlation function
$Gq% for the same system at timet 5 1000. Multiscaling is
clearly seen, with the following exponent values calcula
from power-law fits to the data for 2< l<10: z1

FIG. 16. The rms interface widthW and the momentssq ,
q51–4, of the nearest-neighbor height difference as functions
time t for the 1D CKD model (l52, c50.02, L 5 1000, aver-
aged over 2000 runs!. Inset: the ratiossq(t)/s1(t), q 5 2, 3, and
4, as functions of timet. The data shown in the inset were averag
over 200 runs.
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50.7460.03, z250.6660.03, z350.5860.03, and z4
50.5060.03. These exponent values are also similar to th
found in Ref. @8# for the 1D DT model. The multiscaling
behavior forl< 20 is clearly illustrated in the inset, wher
we have plotted the ratiosGq( l )/G1( l ) for q 5 2, 3, and 4 as
functions ofl .

We have also investigated the dependence ofW on the
sample sizeL in this model for small values ofL. The time
dependence ofW in a sample of lengthL is expected to be
described by the finite-size scaling equation

W~t,L !5tb f ~Lt21/z!. ~21!

The scaling functionf (x) in Eq. ~21! goes to a constant a
x→` (t!Lz), so that the interface width grows astb at
early times. From the data shown in Fig. 16, we estimate
value ofb to be close to 0.35. The scaling function behav
as f (x)'xbz in the x→0 limit, so that at times long com
pared toLz, the interface width becomes time independe
and proportional toLa with a5bz. The value of the expo-
nent a is estimated to be close to 1.25 from the observ
sample-size dependence of the interface width at satura
These exponent values correspond toz. 3.5. The scaling
equation~21! can also be written as

W~t,L !La5g~tL2a/b! ~22!

so that for a proper choice of the values of the expone
a andb, the data for differentL andt should collapse to a
single scaling curve whenWLa is plotted againsttL2a/b. A
scaling collapse of the data obtained for three different v
ues~20, 40, and 80! of L for the CKD model withl52.0 and
c50.02 is shown in Fig. 18. The number of independent ru
used in generating the data shown is 2000
L5 20 and 1000 forL 540 and 80. The exponent value

FIG. 17. The height-difference correlation functionsGq( l ), q
5 1–4, at timet 5 1000 as functions of the separationl for the 1D
CKD model (l52, c50.02, L 5 1000, averaged over 200
runs!. The solid lines are power-law fits to the data forl< 10. Inset:
the ratiosGq( l )/G1( l ), q 5 2, 3, and 4 as functions of the sep
ration l .
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used in the scaling plot area 5 1.25 andb 5 0.355. Thus,
it is clear that the CKD model with these parameters exhib
the expected scaling behavior for the global quantityW.
These exponent values, when combined with the value
the exponentsaq /z and zq quoted above, satisfy the ex
pected relationaq1zq5a within error bars, although there
appear to be systematic deviations from this relation for la
q. Very similar results were obtained in Ref.@8# for the DT
model.

We have also calculated the distribution of the neare
neighbor height differences at long times. Results for the
CKD model withl 5 2.0 andc 5 0.02 are shown in Fig. 19
We show the distributionP(s) for two different cases: for a
system with L5103 ~averaged over 2000 runs! at time
t51000 ~the time at which multiscaling in$sq% tapers off;
see Fig. 16!, and for a system withL 5 80 ~1000 runs!
averaging over the time interval 53104<t<53105 in the
saturation regime. In both cases, the distribution ofs is found
to be strongly non-Gaussian with a long tail extending
large values ofs. As shown in the figure, a power-law form
P(s)}s2h, provides an excellent fit to the data over mo
than four decades. The best-fit value of the exponenth of the
power law is found to be 3.2 for theL 5 1000 system and
2.5 for theL 5 80 system. This power-law behavior is di
ferent from the result obtained@8# for the 1D DT model in
which P(s) appears to show a stretched exponential beh
ior. As shown in the inset of Fig. 19, a stretched exponen
form with a stretching exponent' 0.6 provides a good fit to
our L 5 80 data for small values ofs, but fails at larger
values.

These results clearly show that multiscaling behavior v
similar to that observed in Refs.@8–10# can be generated b
a controlled instability of the kind described above. It shou
however, be noted that the multiscaling we find is transi
in the sense that it occurs only over a limited range of tim

FIG. 18. Scaling plot for the dependence of the interface wi
W in the 1D CKD model (l52.0, c 5 0.02! on timet for systems
with different sizesL. The data forL 5 20, 40, and 80 were ob
tained by averaging over 2000, 1000, and 1000 runs, respectiv
The values of the exponents used in this scaling plot
a51.35, b 5 0.355.
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A careful look at the data of Refs.@8–10# suggests that the
same is true for the atomistic models studied in these pap
The approximate multiscaling we find is nonuniversal: t
effective exponentszq andaq extracted from our numerica
data seem to depend on the way in which the instability
controlled. Similar nonuniversality is also found in the at
mistic models studied in Refs.@8–10#.

The similarity between the CKD model with appropria
choice of the parameters and the DT model is also illustra
by a comparison between the growth profiles in the t
models. Since both these models are atomistic in natur
makes sense to compare the growth profiles obtained a
same value of the discrete time measured in units of num
of layers deposited. In Figs. 20 and 21, we show typi
growth profiles in, respectively, the 1D DT model and t

FIG. 19. Distribution of the nearest-neighbor height differen
s in the 1D CKD model (l52.0, c 5 0.02!. Results are shown fo
L51000, t 5 1000~averaged over 2000 runs! and also forL 5 80
in the saturation regime (53104<t<53105), averaged over 1000
runs. The solid lines represent fits of the data to the power-
form, P(s)}s2h, with h 5 3.2 for theL 5 1000 data andh 5 2.5
for theL 5 80 data. The inset shows the best stretched expone
fit to theL 5 80 data for small values ofs.

FIG. 20. Typical profile of the interface generated at tim
t5104 in the 1D DT model withL 5 1000. The quantity plotted
along the vertical axis is the deviation of the height from the av
age height which, by definition, is equal tot.
rs.
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1D CKD model withl 5 2.0 andc 5 0.02. Both profiles are
obtained for samples withL 5 1000 after the deposition o
104 layers. The average value has been subtracted off f
the heights plotted in these figures. The similarity betwe
these two profiles becomes evident when one is inve
relative to the other, i.e., if the transformationh→2h is
made in one of the profiles. This transformation is equival
to changing the sign ofl in the CKD model. Thus, the DT
model appears to be similar to the CKD model~and also to
the CLD model! with a negative value ofl. The asymmetry
between the peaks and troughs of the profile is eviden
both Figs. 20 and 21. In the 1D DT model~Fig. 20!, the
peaks of the profile are generally rounded and the trou
tend to be very sharp and ‘‘spiky.’’ The profile also wande
a longer distance from the baseline~average height! in the
negative direction. Both these features are reversed in
profile obtained in the 1D CKD model~Fig. 21!. The reason
for this ‘‘inversion’’ is quite simple. The profile obtained in
the CKD model with positivel exhibits sharp peaks an
wanders a longer distance on the positive side because p
are unstable in this model. The situation is reversed in
DT model because, as shown below, grooves have a fi
probability of getting deeper in this model. This differen
can be eliminated simply by changing the sign ofl in the
CKD model.

B. Controlled instability models with modified deposition rule

We have constructed and studied by simulations a mo
fied version of the atomistic KD model in which the depo
tion rule is changed in order to control the growth of neare
neighbor height differences. This study was motivated by
following observation. In order to explore further the co
nection between controlled instability and multiscaling, w
studied by simulations the evolution of isolated pillars a
grooves in the 1D DT model. We start with a configurati
which is flat everywhere except at the central point, wh
there is a pillar of heighth0 or a groove of depthh0. We then
simulate the time evolution of this state and measure

w

ial

-

FIG. 21. Typical profile of the interface generated at tim
t5104 in the 1D CKD model with l52.0, c50.02, and
L51000. The average height which, by definition, is equal tot, has
been subtracted from the values plotted along the vertical axis
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probability that the absolute value of the nearest-neigh
height difference at the central site exceedsh0 at timet. We
find that the probability of a pillar becoming higher is strict
zero whereas grooves have a nonzero probability of bec
ing deeper. Thus, the asymmetry between grooves and p
found in the models described above is present in the
model also. It is not difficult to explain the origin of thi
asymmetry. Consider a configuration in whichhi is zero ev-
erywhere except at the siten wherehn5h0. For a positive
h0 ~a pillar at siten), a particle deposited at siten diffuses to
one of its nearest-neighbor sites because the numbe
bonds at siten is one whereas the number of bonds at
sites n11 and n21 is two. Particles deposited at site
n11 andn21 do not diffuse because each of these two s
have two bonds. Thus, there is no deposition sequence w
can increase the height differencesuhn2hn21u and
uhn2hn11u. In contrast, for a negativeh0 ~a groove at site
n), there are certain deposition sequences which incre
these height differences. Consider, for example, the sequ
in which a particle is first deposited at the siten12 and then
another particle is deposited at the siten11. The particle
deposited atn12 stays there because although this site
only one bond, the nearest neighbors of this site also h
only one bond each. The particle deposited subsequent
n11 also stays at this site because it now has two bon
The difference between the heights at sitesn andn11 in-
creases in this process. Therefore, the probability of a gro
becoming deeper in the course of time should be nonzer
this model. This simple picture also implies that this pro
ability should not depend strongly onh0, the initial depth of
the groove, as long ash0 is not very small. We believe tha
the nonzero probability of grooves becoming deeper is
basic reason for the occurrence of large values of the nea
neighbor height difference~which lead to multiscaling! in
the 1D DT model. This belief is supported by examinatio
of the height profiles generated in simulations of the 1D
model which show that large values of the nearest-neigh
height difference almost always correspond to deep groo
in this system~see, for example, Fig. 20!.

The results of our simulations on the 1D DT model, o
tained by averaging over 105 runs on aL 5 32 sample, are
shown in Fig. 22. The data shown were obtained
h05100. The same behavior is found for all values
h0.10. These results are consistent with the simple pict
described above. The probability of increase of the depth
a groove is found to increase initially with time, reach
maximum neart51 and decay slowly to zero at longe
times. The shape of the probability vs. time curves in t
model is qualitatively similar to that of the curve shown
Fig. 14 forh0 5 25 in the CKD model. There are, howeve
large quantitative differences between the two curv
Clearly, the probability of growth of the nearest-neighb
height difference is substantially smaller and decays faste
time in the DT model. We have also investigated the ti
evolution of wider grooves in the 1D DT model. A groove
depthh0 and widthw corresponds to an initial configuratio
in which the height is 2h0 at the sites
n,n11, . . . ,n1w21, and zero everywhere else. All value
of n are equivalent because periodic boundary conditions
used. From simulations of the time evolution of initial co
figurations with different values ofw and h0, we calculate
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the probability that the difference between the height at
central site of the groove and the average height outside
groove is greater thanh0 at timet. As shown in the inset of
Fig. 22, where we have plotted the results forw 5 3 and
h05 30 and 90~these results were obtained by averagi
over 1000 runs on samples withL5128!, this probability is
quite high and it decays rather slowly with time. The pro
ability of a groove getting deeper is found to increase w
increasingw and h0. The decay of this probability in time
becomes slower as the values ofw and/orh0 are increased.
Detailed examination of the configurations generated in
simulations shows that the difference between the heigh
the center of the groove and the average height outside
groove does not increase much beyondh0, but remains
slightly higher thanh0 with a high probability over a rela-
tively long period of time which increases withw and h0.
This behavior may be understood in the following way. Co
sider a groove withw 5 3 centered at the siten. Each of the
nearest neighbors of the central siten has two bonds in the
initial state. Therefore, particles dropped at one of these
neighbors of the central site stay at that site, and the cen
site does not get any particle from its nearest neighbors
ing the initial time evolution of the system. There is, how
ever, a finite probability for a particle dropped at the cent
site to move to one of the neighboring sites. This wou
happen, for example, if the heights at the sitesn, n11, and
n21 are equal. So, the rate at which the height at the cen
site grows initially is slightly lower than the rate of growth o
the average height~which, by definition, is one layer per un
time in this model!. These considerations do not apply
long times when the groove begins to fill up. For this reas
the probability of the groove getting deeper begins to
crease at long times, making this ‘‘unstable’’ behavior
long-lasting transient. The slow decay of this transient
havior for large values ofw and h0 may have important
implications for real growth on patterned substrates.

FIG. 22. The probability of increase of the depth of an isola
groove of widthw 5 1 in the 1D DT model as a function of time
t. The data were obtained by averaging over 105 runs on samples
with L 5 32. This probability is independent of the initial dep
h0 of the groove for allh0.10. Inset: the probability of increase o
the depth of an isolated groove of widthw 5 3 in the 1D DT
model. Results obtained by averaging over 1000 runs onL 5 128
samples are shown for initial depthh0530 andh0590.
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55 2249INSTABILITY, INTERMITTENCY, AND . . .
An important difference between the results obtained
the DT and CKD models is that the growth probability
close to zero forh0.hmax in the CKD model, whereas it is
almost independent ofh0 ~for w 5 1! or an increasing func-
tion of h0 ~for w>3) in the DT model. This is probably th
reason why the 1D DT model exhibits multiscaling over
longer period of time than the CKD model~in the 1D DT
model, multiscaling lasts for at least six decades in ti
@8–10#, compared to about three decades in the CKD mod!.
This observation suggests that a controlled instability mo
in which the growth probability remains nonzero for lar
values ofh0 may exhibit multiscaling behavior over a long
period of time. It is difficult to construct such a model alon
the lines described in Sec. IV A. This is because an incre
in the value ofhmax, which can be achieved either by in
creasingl or by decreasingc, makes the instability strong
leading to deviations from scaling for global quantities su
asW ~see, for example, Fig. 15!. We, therefore, constructe
a different class of atomistic models in which the instabil
in the original KD model is controlled by an appropria
modification of the deposition rules. We describe below o
such model and the results obtained from simulations of
model in one dimension.

The deposition rule in this model is designed to rest
the development of large values of the nearest-neigh
height difference. As in the KD model, the height variab
in this model are discrete and time is measured in units
number of layers deposited. The deposition of a particle
volves the following steps. A site is chosen at random a
the KD rules ~described in Sec. II! are used to determin
whether a particle is to be added to the chosen site or to
of its nearest neighbors. Letn be the index of the site which
is selected for the addition of a particle according to the K
rules and letsl[uhn2hn21u and sr[uhn112hnu be the
nearest-neighbor height differences at this site before the
dition of the particle. The addition of a particle at siten
would change the values of bothsl and sr . If both sl and
sr would decrease due to the addition of the particle at
n, the particle is added at siten with probability one. If one
of these two height differences would increase while
other one would decrease by the addition of a particle at
n, then we defineS to be the value of the height differenc
which would increase. If both the height differences incre
due to the addition of a particle at siten, then we defineS to
be the larger ofsl and sr . In these cases, the particle
deposited at siten with probabilityp5exp(2uS), whereu is
an adjustable parameter. Operationally, this is done by g
erating a random numberr which is distributed uniformly
between 0 and 1 and the particle is deposited at siten ~i.e.,
the height variable at siten is incremented by 1! if r<p. If
r.p, one of the two other sites originally considered f
deposition is chosen randomly and the particle is depos
there. This model reduces to the original KD model foru 5
0. For small positive values ofu, the modification in the
deposition rule disfavors but does not completely elimin
the growth of large nearest-neighbor height differenc
There is a second route by which large height differen
may form in this model. When a site other than the siten is
chosen for the deposition of a particle by the stochastic
described above, it is not checked whether this deposi
would increase the height differences between this site
r
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its nearest neighbors. So, in some cases, the deposition
particle at a site other than the siten leads to an increase in
the value of some nearest-neighbor height difference,
such increases are not controlled by the parameteru. One
can, in principle, include such checks in the deposition ru
but this would make the rule very complicated and diffic
to simulate efficiently.

Figure 23 shows our simulation results for the probabil
of growth of an isolated pillar of initial heighth0 in this
model with l 5 2.0 andu 5 0.06. The data shown wer
obtained by averaging over 5000 runs for systems w
L5100. As expected, the probability of growth of isolate
pillars in this model decreases with increasingh0, but does
not go to zero for large values ofh0. The magnitude of the
growth probability for large values ofh0 in this model is
similar to that in the 1D DT model, but the probability de
cays faster in time in the DT model. The observation o
nonzero probability of growth of pillars with large values
h0 suggests that the time interval over which this model
hibits multiscaling behavior should be longer than that
the CKD model with similar parameter values. This expe
tation is confirmed by our simulation results which a
shown in Figs. 24 and 25 for a system wi
L51000, l52.0, andu 5 0.06. The data shown represe
averages over 200 runs. As can be seen in Fig. 24, the
dependence of the rms interface widthW shows excellent
power-law scaling withb. 0.35. The quantities$sq%, on the
other hand, show evidence of multiexponent scaling over
entire time interval of these simulations. This time interv
~104 units! is an order of magnitude longer than the tim
interval over which multiscaling was observed in the CK
model ~see Fig. 16!. The fact that the$sq% with different
values ofq do not grow in time with the same exponent
clearly shown in the inset of Fig. 24, where we have plot
the time dependence of the ratiossq /s1 for q 5 2, 3, and 4.
The observed increase of the values of these ratios with t
implies that$sq% grows faster in time for larger values o
q. It is perhaps more appropriate to characterize the obse
behavior of the$sq% asdeviation from single-exponent sca
ing, rather than multiscaling. This is because log-log plots
sq vs t ~Fig. 24! show substantial deviations from linea
behavior. For this reason, it would not be particularly mea

FIG. 23. The probability of growth of an isolated pillar in th
1D modified KD model~see text! with l52.0, u 5 0.06, as a
function of time. These data were obtained from 2000 runs
samples withL 5 100. Results for four different values, 10, 30, 5
and 70, of the initial heighth0 are shown.
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ingful to define the exponentsaq /z in this model. As noted
above, similar~but less pronounced! deviations from pure
power-law behavior of thesqs have also been observed
simulations of the 1D DT model. The data for the correlati
functions $Gq( l )% measured at timet5104 are shown in
Fig. 25. These data show clear evidence of multiscali
with exponent valuesz1.0.79, z2.0.71, z3.0.62, and
z4.0.57. These results show that multiscaling similar
that observed in the 1D DT model can be generated by co
trolling the instability in the 1D KD model by appropriat
modifications of the deposition rules.

A typical growth profile obtained in the modified KD
model withL51000, l52.0, andu 5 0.06 after the depo-
sition of 104 layers is shown in Fig. 26. The similarity be
tween this profile and the one shown in Fig. 20 for the
DT model~after making theh→2h transformation! is quite
remarkable. All the characteristic features present in the
model profile are also present in the profile obtained in
modified KD model. This similarity provides additional su

FIG. 24. The rms interface widthW and the momentssq ,
q51–4, of the nearest-neighbor height difference as functions
time t for the 1D modified KD model (l52, u50.06, L 5 1000,
averaged over 200 runs!. Inset: The ratiossq(t)/s1(t), q 5 2, 3,
and 4, as functions of timet.

FIG. 25. The height-difference correlation functionsGq( l ), q
5 1–4, at timet5104 as functions of the separationl for the 1D
modified KD model (l52, u50.06, L 5 1000, averaged ove
200 runs!.
,

T
e

port to the connection we propose between the DT mo
and the models with controlled instability studied in this p
per. One could perhaps attempt to obtain better quantita
agreement between the multiscaling behavior in the DT
the controlled instability models by trying other variants
the LD equation and the KD model@e.g., by trying other
forms for the functionf (x) in Eq. ~19! for the CLD/CKD
model or by modifying the deposition rules of the KD mod
in a different way#. However, we do not see much purpose
such an attempt because~i! the multiscaling behavior is non
universal, as we have been emphasizing throughout this
per, and~ii ! such efforts are bound to be computationa
intensive, the number of possible modifications of the L
equation and/or the KD model being arbitrarily large. W
believe that the results presented in this paper unamb
ously establish the~qualitative! connection we propose be
tween controlled instability and the observed multiscaling
the 1D DT model.

V. DISCUSSIONS

In this section, we discuss a number of questions that
raised by the results obtained in our study. The work
scribed here leads to two main results—the first one is ab
the presence of an instability in discretized growth equati
and the second one is about the connection between
instability and multiscaling. Both these results have imp
tant implications in the study of models of surface grow
The observation of an instability in discretized versions
nonlinear growth equations raises the question of wheth
similar instability is also present in the truly continuum lim
As discussed in Sec. III, the presence of an instability in
discretized version of the 1D noiseless KPZ equationdoes
not reflect the behavior of the corresponding continuum K
equation which does not have any instability. It is not cle
whether the same conclusion would apply to the ot
growth equations~the KPZ equation@22# with noise and the
LD equation! considered here, mainly due to the fact that

f FIG. 26. Typical profile of the interface generated at tim
t5104 in the 1D modified KD model withl52.0, u50.06, and
L 5 1000. The quantity plotted along they axis is the deviation of
the height from the average height which, by definition, is equa
t.
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exact result is available about the behavior of these c
tinuum equations. The work of Ref.@20# suggests that the
noiseless continuum LD equation in one dimension does
exhibit a true finite-time singularity in the sense that t
height variable remains bounded by a value proportional
power of the system size. That work, however, does not
out the occurrence of an instability in which the height va
able increases very rapidly in time at one or more isola
points in the system. In fact, the numerical results reporte
Ref. @20# indicate that pillarlike structures initially grow in
height in the continuum system also. Throughout this pa
we use the term ‘‘instability’’ to mean a rapid growth of th
magnitude of the height variable in a local region of t
system. The rate of change of the height in the region of
instability must be much faster than the corresponding rat
the background. The rapid change of the height in the in
bility region need not lead to a true divergence. The ques
of whether a true divergence occurs or not is interesting,
not very important for most practical purposes. For exam
a rapid growth of the height variable at one or more points
the sample may lead to deviations from scaling behav
even if there is no true divergence. This is shown clearly
Fig. 15. Also, it is almost impossible to distinguish in n
merical work between a true divergence and a growth t
very large but finite value. The issue of a true divergence
the continuum growth equations is beyond the scope of
work.

Several atomistic models which are believed to belong
the universality class of the KPZ equation or the LD equ
tion are known not to have any instability. For example,
restricted solid-on-solid model of Kim and Kosterlitz@23#,
which is believed to be in the same universality class as
KPZ equation, cannot exhibit any instability of the kind b
ing considered here because the nearest-neighbor heigh
ference cannot, by construction, exceed unity in this mo
Similarly, the recently introduced conserved version@24# of
the Kim-Kosterlitz model, which is supposed to belong
the universality class of the LD equation, also does not
hibit any instability. Another example is the model solv
exactly by Gwa and Spohn@25# in one dimension. This
model, believed to belong to the 1D KPZ universality cla
is also known not to have any instability. These results, ho
ever,do notprovide much help regarding the possibility
the occurrence of an instability in the corresponding c
tinuum growth equations. This is because these models
tainly differ from the corresponding continuum growth equ
tions by virtue of the presence of terms which are irrelev
in the renormalization group sense. As shown in Sec.
~and discussed in more detail below!, the presence of suc
irrelevant terms may control or eliminate altogether the
stability found in discretized growth equations. Therefo
the absence of an instability in models which are in the sa
universality class as the continuum growth equationsdoes
not imply that the growth equations do not have any ins
bility.

It is clear from the discussion above that the possibility
occurrence of an instability in the continuum growth equ
tions remains an open problem. We hope that our work w
stimulate further investigation of this question. This quest
acquires special importance in view of the fact that a la
part of the currently available information about the behav
n-
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of nonlinear growth equations has been obtained from s
ies of discretized versions. Our work, especially the res
obtained here~and also in Ref.@21#! about the difference
between the behavior of the discrete and continuum vers
of the noiseless 1D KPZ equation, raise serious quest
about the applicability of the information obtained from n
merical integration of discretized growth equations to t
continuum equations. Our simulations suggest that the
sults obtained from numerical integration of the discretiz
equations should apply to the continuum caseas long as
there is no instability. This conclusion is suggested by th
observation that the values of the ‘‘global’’ exponentsb,z,
anda extracted from the results of direct integration of d
cretized growth equations before the occurrence of the in
bility ~or from runs in which no instability occurs, either du
to the smallness ofl or due to the imposition of control! are
in good agreement~within error bars! with the exact~for the
1D KPZ equation! or expected~from, e.g., renormalization
group calculations for the LD equation! results for the con-
tinuum equation. We quote here the values of the expon
b which is determined most accurately in our work. T
calculated value ofb for the discretized LD equation in on
dimension is 0.3256 0.01, and that for the discretized 1
KPZ equation is 0.326 0.02. These values are in goo
agreement with the expected result,b 5 1/3, for the 1D LD
equation and the exact result,b 5 1/3, for the 1D KPZ
equation. It would be useful to substantiate this conclus
with further study.

Our work also brings out the importance of terms whi
are often not included in continuum growth equations b
cause they are irrelevant in the renormalization group se
These terms involve higher powers of the gradient of
height variable. It is well known that these terms are irr
evant in the KPZ equation in one dimension and in the
equation in two and higher dimensions. This, however, d
not mean that they are totally unimportant. The results
scribed in Sec. IV about the possibility of controlling th
instability in the discretized growth equations by the intr
duction of higher powers of the gradient with appropria
coefficients indicate that such terms may play a very imp
tant role in the stability of the growth equations. These ter
do not affect the values of the global exponents, but
growth equation may be unstable if such terms are not
cluded. A recent paper by Marsili and Bray@26# makes a
similar point. They consider an infinite-range version of t
KPZ equation and show that this equation is unstable if c
tain higher-order terms~which are irrelevant in the RG
sense! are not included. The instability they find is similar t
the one we have found in discretized growth equatio
There are well-known examples in equilibrium critical ph
nomena where formally irrelevant terms~the so-called ‘‘dan-
gerous irrelevant variables’’! play a similar role in the con-
trol of instabilities. Consider, for example, the standa
Ginzburg-Landau free energy functional@27# for a scalar or-
der parameter~the so-calledf4 field theory!. It is well
known @27# that thef4 term in this free energy functional i
irrelevant in the renormalization group sense if the dime
sion of space is higher than 4. However, thesign of the
coefficient u of the f4 term is very important because
negative value ofu leads to an instability. To control this
instability, one needs to introduce one or more higher-or



e
led

wt
da
is

ti-
v-
or
rs
ec
os

u
tu
c
It
ly
lo
d
bl

th
to
er
em

a
u
er
in
al
he
ty
th
ta
at

e
so
w-

rm

o
t

po

e
t
m

o
ls
th
a

ay
e-
in
c-
ith
on-
the
ul-

ef.
nce

rks

of
up
e-
to
t it
f a
n-
th
th
e all
the

uc-
as-
he
on-
rt-
as-
m
es,
cut-

il-
ri-
out
ua-
lity

he
ce
t a
e-
el
e

ta-
di-
e-
at
d
ec.
d
to
es
h

2252 55C. DASGUPTA, J. M. KIM, M. DUTTA, AND S. DAS SARMA
terms~typically, af6 term! which are also irrelevant in the
renormalization group sense. The role played by thef6 term
in this example is qualitatively similar to the role of th
higher-order terms introduced in our models of control
instability. Another aspect of this example@27# from equilib-
rium critical phenomena may also be relevant to the gro
problems being considered here. The Ginzburg-Lan
model is known to exhibit strong crossover effects if it
close to an instability, i.e., if the value ofu is positive but
very small, the free energy density being singular in the lim
u→0. This crossover in this model is from apparent tricri
cal behavior~which would be the asymptotic critical beha
ior for u 5 0! to the usual critical behavior expected f
u.0. These crossover effects lead to apparent nonunive
values of the effective critical exponents, and the corr
values of the critical exponents are observed only very cl
to the critical point~i.e., at very long length scales!. As dis-
cussed below, there are reasons to believe that the non
versal behavior observed in some of the growth models s
ied in our work is also a consequence of crossover effe
arising from the proximity of the system to an instability.
will be particularly interesting to try to establish formal
this suggestive but qualitative analogy between anoma
dynamicscaling in DT and controlled instability models an
crossover scaling induced by dangerous irrelevant varia
in equilibrium critical phenomena.

The observation that the instability in discretized grow
equations can be effectively controlled or eliminated al
gether by the introduction of formally irrelevant higher-ord
terms suggests a practical solution to the numerical probl
encountered in previous studies@12,13# using direct integra-
tion. If the discretized version of a continuum growth equ
tion belongs in the same universality class as the continu
equation itself, then a direct numerical integration of a v
sion of the discrete equation which is controlled by the
troduction of irrelevant higher-order terms should yield v
ues of global critical exponents appropriate for t
continuum growth equation without running into instabili
problems. The usefulness of this method is illustrated by
results described in Sec. IV A for models in which the ins
bility is controlled or eliminated. It is interesting to note th
the prescription suggested by Newman and Bray@21# for
getting rid of the instability in the discretized version of th
noiseless 1D KPZ equation, while differing in details, al
amounts to the introduction of terms involving higher po
ers of the gradient of the height variable.

The 1D LD equation is special in the sense that the te
involving higher powers of the gradient are allmarginally
relevant in one dimension. It has been argued in Ref.@10#
that the marginal relevance of these terms may lead to n
universal corrections to the critical exponents and also
anomalous dynamic scaling where local and global ex
nents differ@14#. The value of the exponentb found in our
simulations of the CKD model and the modified KD mod
described in Sec. IV B is 0.35560.005, which is close to, bu
significantly different from, the value 1/3 expected fro
renormalization group calculations@19# on the LD equation.
It is tempting to attribute this difference to the presence
higher powers of the gradient in the controlled KD mode
However, we do not have any other evidence to back up
explanation which, therefore, remains speculative. The le
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ing order mode-coupling analysis of Ref.@10# also suggests
that the marginal relevance of the higher-order terms m
play an important role in the multiscaling behavior. As d
scribed in Sec. IV A, we do find approximate multiscaling
models in which the instability is controlled by the introdu
tion of an infinite series of higher powers of the gradient w
appropriate coefficients. Therefore, there is a definite c
nection between multiscaling and the coefficients of
higher-order terms. However, the values of the effective m
tiscaling exponentsaq andzq obtained from our simulations
do not satisfy the specific quantitative prediction of R
@10#. Thus, on a conceptual level, there is a corresponde
between our finding of a~‘‘controlled’’ ! instability and the
infrared singularity underlying the work of Ref.@10#. How-
ever, a more detailed connection between these two wo
must await further investigation.

The possibility that continuum and discretized versions
a growth equation may exhibit different behavior brings
the question of which version is more appropriate for d
scribing real physical systems. While we do not claim
have an answer to this question, we wish to point out tha
may be inappropriate to regard the discretized version o
growth equation to be less ‘‘fundamental’’ than the co
tinuum version. Discretized versions of nonlinear grow
equations may actually be closer to the physics of grow
processes than the continuum equations. This is becaus
growth processes are discrete at the atomic scale due to
presence of the cutoff introduced by the atomic lattice str
ture. A continuum description is obtained under certain
sumptions about the smoothness of the growth profile. T
discreteness at the atomic level is incorporated in the c
tinuum description through the introduction of a sho
distance cutoff. The instability we find suggests that the
sumptions which go into the development of a continuu
description may not be valid under certain circumstanc
depending on the values of the bare coupling constants,
offs, etc. We are not suggesting thatreal growth processes
necessarily involve formation of microscopic grooves or p
lars of atomic sizes which we find in our simulation of va
ous discrete growth models. We are, however, pointing
that discretized models of continuum nonlinear growth eq
tions may not necessarily belong to the same universa
class as the original continuum equations.

Finally, we discuss the implications of our results on t
origin and nature of multiscaling in models of surfa
growth. It is clear from the results described in Sec. IV tha
controlled instability is responsible for the multiscaling b
havior in the models we have studied. In the CKD mod
described in Sec. IV A, multiscaling is found only if th
value of the control parameterc is such that the instability is
present. Also, multiscaling behavior for such values ofc is
observed only during the time interval over which the ins
bility is operative. The same behavior is found for the mo
fied KD model described in Sec. IV B. The multiscaling b
havior exhibited by these models is very similar to th
observed@8–10# in the 1D DT model and in other relate
atomistic models of surface growth. As described in S
IV B, the behavior of the probability of growth of an isolate
groove as a function of time in the 1D DT model is similar
that found in the modified KD model for appropriate valu
of the control parameteru. All these results clearly establis
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a connection between multiscaling in growth models an
controlled instability of the kind described here. Our stu
also leads to the important conclusion that the multisca
found in growth models is necessarilynonuniversaland
transient in time. Consider, for example, the CKD mod
described in Sec. IV A. In this model, the values of the e
ponentsb, z, anda, which describe theglobalproperties of
the growing interface, are essentially the same for all val
of the control parameterc ~of course, the value ofc should
be sufficiently large so that the rms surface widthW does not
show any departure from power-law behavior; otherwi
these exponents cannot be defined!. The models with differ-
ent values ofc, therefore, belong to the same universal
class as far as the global behavior is concerned. On the o
hand, the multiscaling behavior, which involveslocal quan-
tities because it is manifested in the time dependence of
moments of the nearest-neighbor height difference and in
dependence of the correlation functionsGq( l ,t) on l for
l,j(t), is found to be very different for different values o
c. Similar results are obtained for the modified KD model
Sec. IV B. In this model also, the global exponents are fou
to be insensitive to the value of the control parameteru, but
the multiscaling behavior depends crucially on it. These
sults clearly show that multiscaling in these models is a n
universal feature. We also find that all the models studied
our work exhibit multiscaling only over a limited period o
time. The length of the time interval over which multiscalin
is observed varies greatly from one model to another,
multiscaling is found to disappear at sufficiently long tim
in all these models. This isnota saturation effect because th
rms surface widthW continues to grow beyond the time
which multiscaling disappears~see Fig. 16, for example!. A
careful look at the simulation data of Refs.@8–10# shows that
the feature of nonuniversality and the transient nature
a
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multiscaling are present in varying degrees in all the ato
istic models studied in these papers. It is, therefore, reas
able to conclude that multiscaling in discrete growth mod
is a nonuniversal transient behavior, possibly related to
presence of higher-order terms involving higher powers
the gradient of the height variable in the continuum eq
tions appropriate for these discrete models. The simila
between our results for the controlled-instability versions
the KD model~which, by construction@7#, provides an ato-
mistic version of the LD growth equation! and those ob-
tained in Refs.@8–10# for the 1D DT and related model
suggests that the latter models are described by the LD e
tion with the addition of terms containing higher powers
the height gradient with appropriate coefficients. The m
ginality of these terms in one dimension may provide
explanation of why the time period over which multiscalin
is observed in the 1D DT model is very long. It is interesti
to note in this context that recent simulations of the D
model in two dimensions@28# show that this system als
exhibits transient multiscaling, but over a much shorter
terval of time. This may be related to the fact that term
involving higher powers of the height gradient are marg
ally irrelevant in the 2D LD equation. Further investigatio
of the role of these higher-order terms in the behavior
growth equations would be interesting and important fo
complete understanding of the problem.
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