PHYSICAL REVIEW E VOLUME 55, NUMBER 3 MARCH 1997

Instability, intermittency, and multiscaling in discrete growth models of kinetic roughening
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We show by numerical simulations that discretized versions of commonly studied continuum nonlinear
growth equationgsuch as the Kardar-Parisi-Zhang equation and the Lai—Das Sarma-Villain eguatibn
related atomistic models of epitaxial growth have a generic instability in which isolated gdlagsoove$ on
an otherwise flat interface grow in time when their heightdepth exceeds a critical value. Depending on the
details of the model, the instability found in the discretized version may or may not be present in the truly
continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very
different from that of their continuum counterparts. This instability can be controlled either by the introduction
of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pdtagsoove$
by other means. A number of such “controlled instability” models are studied by simulation. For appropriate
choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, char-
acterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is
active. The behavior found in this regime is very similar to the “turbulent” behavior observed in recent
simulations of several one- and two-dimensional atomistic models of epitaxial growth.
[S1063-651%97)09002-9

PACS numbgs): 05.70.Ln, 64.60.Ht, 81.10.Aj, 81.15.Hi

I. INTRODUCTION are the consequence of a genuine instability intrinsic to the
discretized growth equations. This instability is found to be
In recent years, much attention has been focused on th&generic” to a large class of discretized growth equations
problem of kinetic surface roughening associated with thewith nonlinearities. In particular, we find that this instability
nonequilibrium dynamics of growing interfacdd,2]. A  is present in 1D and 2D versions of the conserved fourth-
number of simple models of epitaxial growth have been proorder growth equation introduced by Lai and Das Sarma
posed and studief3—9] analytically and numerically, re- (LD) [4] and by Villain[5], and also in the 1D Kardar-Parisi-
vealing a rich variety of interesting phenomena. One suclZhang(KPZ) equation[3] with or without noise. Since the
phenomenon for which no explanation is currently availablelD continuum KPZ equation without noise, which is exactly
is the multiexponent scaling‘multiscaling” in short) of  solvable via a mapping to the diffusion equation by a Cole-
height fluctuations founf8] in recent simulation§8—10] of =~ Hopf transformation{2], does nothave any instability, our
a class of one-dimensionélD) limited-mobility models of  results lead to the important conclusion that the behavior of
epitaxial growth. This phenomenon is particularly interestingdiscretized nonlinear growth equations may be very different
because it exhibits a striking similarif@] to the intermittent from that of the corresponding truly continuum versions.
multiscaling of velocity fluctuations in fully developed fluid Whether this instability occurs or not during the time evolu-
turbulence 11]. tion of a system started from a flat initial state is determined
This paper describes the results of a numerical investigaby the nature of the dynamic scaling exhibited by the system.
tion of the origin of this interesting multiscaling behavior. We find that this instability is inevitable at sufficiently long
Our study shows that the multiscaling found in these modelsimes in models which exhibit “anomalous” dynamic scal-
is closely related to an instability of discretized versions ofing [14] (provided the system size is sufficiently large to
commonly studied nonlinear growth equations. In this instaprevent saturation whereas models exhibiting conventional
bility, isolated structuressuch as pillars or grooveen aflat  scaling show this instability only if the value of a dimension-
interface tend to grow in time if the “size” of the structure less coupling constarftiefined below in terms of the values
(i.e., height of a pillar or depth of a groovexceeds a critical of the parameters in the original growth equation and the
value. We show that this instability is the cause of numericalength scale of discretizatipnexceeds a nonzero critical
difficulties encountered in earlier wof2,13 on numerical value. A similar instability is found in an atomistic modé]
integration of discretized growth equations. These difficultieswvhich is believed to provide an exact discrete representation
were usually attributed to “numerical artifacts” in previous of the continuum LD growth equation.
studies. In contrast, we show that these numerical difficulties Next, we show that this instability can be controlled by
introducing higher-order nonlinear terms with appropriate
coefficients. These higher-order terms cut off the growth of
*Present and permanent address: Dept. of Physics, Indian Instituggllars or grooves at large values of the height or depth. The
of Science, Bangalore 560012, India. instability in atomistic growth models can also be controlled
"Present and permanent address: Dept. of Physics and Interdisély modifying the deposition rule in a way that restricts the
plinary Research Center in Physical Science, Hallym Universitygrowth of the height of a pillar or the depth of a groove. We
Chunchon, 200-702, Korea. find that such models with controlled instability exhibit
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deviations from simple scaling in the time interval during We numerically integrate these two equations using a simple
which the instability is operative. If the paraméd®mused in  Euler schemg12,17]. To this end, we first define dimension-
the control of the instability i¢are chosen properly, then the less variables

behavior in this regime is found to be very similar to the

multiscaling observed in simulation8—10] of atomistic x=rlrg, 71=tlty, h=h'/hg, (4)
growth models. The exponents which describe this approxi-

mate multiscaling behavior are nonuniversal: their values de/1€re ro. to, and hy are appropriately chosen units of

pend on the way the instability is controlled. The overall l€ngth, time,_ and height,_respecti\_/ely. We then d_iscret_ize_in
picture that emerges from this study is qualitatively similarSP2C€ and time by defining the dimensionless discretization
to that suggested in the analytic work of REEQ]. In par- scal_eAx and thg integration time stefor. Using a proper
ticular, our work suggests that the multiscaling behavior ob<cheice of the units, andho, Egs.(1) and(3) can then be
served 8] in the 1D Das Sarma—Tamboren@T) model is represented by the following two update schemes:
described by the LD equation supplemented by a set of =, = —
higher-order nonlinear terms with appropriate coefficients. hi(7+A7) = hi(7) = A7V = V2hi(7) + N [Vhi(7)|]

As noted in Ref[8], the multiscaling found in simulations +JA77/(7) (5)
of growth models is very similar to the intermittent multi- e
fractal behavior observed in fluid turbulence. It is interestinggnd
to note in this context that our proposed explanation of mul-

tiscaling in growth models is conceptually and formally hi(r+Ar)—hi(r)=AT[€2hi(r)+>\|'€hi(r)|2]

similar to a recent proposgl5] which suggests that the mul-

tiscaling of structure functions in turbulence may be ex- + VAT (7). (6)
plained in terms of singularities occurring on a dense set of

space-time points. In these equationsy (7)=h(x;,7) represents the dimension-

The rest of this paper is organized as follows. In Sec. I1less height variable at the lattice pointat dimensionless
we define the models considered in our study and the variouéme 7, V, andV? are lattice versions of the derivative and
correlation functions measured in our simulations to probe.aplacian operators, ang; (7) is a random variable with
multiscaling behavior. Section Il contains a detailed accountero average and variance equal to unity. In most of our
of the instability we find in discretized growth equations andcalculations, we use the following definitions for the lattice
in an atomistic growth model. In Sec. IV, we describe thederivatives:
results of simulations of models in which the instability is

controlled. The behavior found in these simulations is com- 'V'jfi=0.5[f(xi+ij)—f(xi—ij)], (7)
pared and contrasted with the multiscaling behavior observed _
in previous simulations of the DT and related models. Sec- ijfi:f(xi+jAX)+f(Xi_jAX)_2f(Xi), (8)

tion V contains a summary of our findings and a discussion
of the implications of our results. A short paper describingwherej is an unit vector in thgth direction. In some of our
the main results of our study has been submitted for publiealculations, we have also used a more accurate representa-

cation[16]. tion [18] of the lattice derivatives involving two neighbors
on each side. The dimensionless paramatexppearing in
Il. MODELS AND DEFINITIONS Egs.(5) and(6) has the form

Our work involves detailed numerical studies of two con- B (4—aye R
tinuum growth equations, namely, the LD equation and the N=12(ag/lo) o= 22D €)
KPZ equation. These equations are studied using direct nu-
merical integration. We have also studied by numericakor the LD equation and
simulations an atomistic version of the LD equation intro-
duced by Kim and Das Sarm@]. The LD equation we 8\ U2=d)

) - —dy/ —

consider has the form N=12(ag/l) > V2, = 7D (10

ah'(r,)/at=—vV*h'+ NV Vh'[?+5(r,t), (1) for the KPZ equation. In these equatiomg=roAx is the
discretization scal@attice spacingandl is a characteristic
whereh’(r,t) represents the “height” variable at the point |ength determined by the parameters\;, andD of the
r at timet, V and V2 represent, respectively, the spatial original continuum growth equation. Note thatdn= 1, the
derivative and Laplacian operators dndimensions(the di-  value of A would vanish in the true continuum limit,
mension of the substrateand » is a Gaussian random noise Ax—0, for both LD and KPZ equations. However, one

with correlations should remember that a short-distance cui@érhaps of
atomic scale, e.g., the lattice spagimg present in all physi-
(n(r,t)p(r',t"))=2D8(r—r")5(t—t"). (2)  cal situations, and it is not legitimate to use a valueAof
smaller than this cutoff,;,. Therefore, the smallest value
The KPZ equation ind+ 1) dimensions has the form (Amin) that the coupling constant. can have is

V2(@amin/l0)%? and y2(amin/lo) Y2 for the 1D LD and KPZ
ah’ (r,t)/at=wvV2h'+N\,|Vh'|?2+ (1 ,t). (3)  equations, respectively.
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We have also studied an atomistic vers|at of the LD 3
equation in which the height variablélk;} are integers. The .
time evolution of this model is defined by the following
deposition rule. First, a sitésay, i) is chosen at random.
Then the quantity

Ki({hj}):—'ﬁzhi+)\|’€hi|2 (12) z 1;02‘0 0

is calculated for the siteand all its nearest neighbors. Then, =z 2r S T g=4
a particle is added to the site that has the smallest value of &
K among the sité and its nearest neighbors. In the case of a
tie for the smallest value, the sitds chosen if it is involved

in the tie; otherwise, one of the sites involved in the tie is
chosen randomly. Note that this model also involves only
one dimensionless parametar, In this model, “time” is

Ll Ll ol Ll

measured by the number of layers deposited. We call this 0 1 2 3 4
model the KD mode[7] below. 10 10 10 10 10
The possibility of multiscaling was investigated in our T

simulations by monitoring different moments of the nearest-
neighbor height difference and the height difference correla- FIG. 1. The rms interface widttw and the momentsr,,
tion function. Following Ref[8], we define g=1,4, of the nearest-neighbor height differerisee text as func-
tions of time 7 for the 1D discretized LD equation witk = 1.0.
oq(N=([si(DNIHM,  s(t)=|his1()—hi(7)], (120  The data shown were obtained for a system With10%, using an
integration time steph - = 0.01. Inset: the height-difference corre-
and lation functionsG4(l), g = 1,4,(see textas functions of the sepa-

ration| for this system at time- = 10%.
Gq(l, ) =([hi (1) —hi(7)| D™, (13

where we have used the simplified notationfectly flat state and its time evolution was simulated by inte-
h; . =h(x;+1Ax) for the 1D system. In these equations, thegrating the growth equations forward in time. Typical values
average( ) represents an average over the site indexd  of the parameters used in the simulation are system size
different runs corresponding to different realizations of theL =10°, time step Ar = 0.01, and maximum time
random noise. Before saturati¢ie., for 7<L? whereL is  7.,,,=10% The results were averaged over 10-50 indepen-
the size of the system armis the dynamical exponentthe  dent runs. In these runs for small values\gfwe find good
quantities{o4(7)} are expected to show a power-law growth agreement with the predictions of dynamical renormalization
in time 7 in models which exhibit anomalous dynamic scal- group (DRG) calculations[4,19] and no evidence of multi-
ing: scaling. In particular, the exponem® that describes the
etz growth of the root mean squafams) interface widthW with
oq(7)~= 7 (14 time is found to have a value=( 0.34) which is close to the
DRG result, 8=1/3. We also find that the exponents
{aq/z} are essentially independent gfand have a value
close to zerdin the range 0.06—0.08possibly indicating a
ﬁ)garithmic growth in time. Typical results obtained for
A=1.0 are shown in Fig. 1. As shown in the inset of this
figure, the quantitie$G,(l)} also do not show any indica-
~I1¢ < ~ 1z tion of multiscaling. The exponen{s,} have values in the
Ga(h~[ll‘a, 1<l<g(n~7" (19 range 0.8-0.9, and are independer?uqofvithin error bars.
Again, multiscaling, characterized by a dependence of thdhe results obtained from simulations of the KD model for
exponents, on g, can be tested by looking at thedepen- such small values ok are very similar to those described
dence of the ratio,(1)/Gy(1), q=2,3, etc. In our work, above. Results obtained far=0.5 are shown in Fig. 2. The
we consider the first four moments,= 1, 2, 3, and 4. We €Xponents calculated from the time dependencéVoand

follow the notation of Ref[8], in contrast to the notation of q are, respectively3=0.345 anda,/z=0.085 for allg.
Ref.[9], throughout this paper. The behavior of the functionG(1)}, shown in the inset of

Fig. 2, indicates single-exponent scaling wit=0.9 for all

If the exponenty, depends on the value gf then the model

is said to exhibit multiscaling. Thus, whether multiscaling is
present or not can be easily tested by monitoring the ratio
oq(n)loi(7), 9=2,3, ... as functions of time. The height-

difference correlation functions, are expected to behave as

Il INSTABILITY IN DISCRETE GROWTH EQUATIONS ’ . . . .
Q The behavior observed for higher values Xofis quite

In this section, we describe in detail the numerical calcu-different. In this case, the system exhibits the expected con-
lations which lead to the conclusion that a generic instabilityventional scaling behavior at short times. However, an ap-
is present in the discretized growth equations defined in thparent “singularity,” indicated by a rapid growth of the
preceding section. We first studied the behavior of the 1Cheight variable, is found to occur at longer times. It is im-
LD equation, Eq.(5), for small values of the parameter possible to follow numerically the evolution of the system
A (A<2). In these runs, the system was started from a perbeyond the time at which this singularity occurs: attempts to
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FIG. 2. The rms interface widttw and the momentsrg, FIG. 3. The rms interface widttW and the momentsrg,

g=1,4, of the nearest-neighbor height difference as functions ofi=1.4, of the nearest-neighbor height difference as functions of

time 7 for the 1D KD model with\ = 0.5. The data shown repre- time 7 for the 1D KD model with\ = 1.0. The data shown repre-

sent an average over 10 runs on systems Withl(?. Inset: the ~ Sent an average over 10 runs on systems withl 0",

height-difference correlation functiorG4(1), q = 1,4, as func-

tions of the separatiohfor this system at time-=10%. \; see belowgrow in time in both the LD equation and the
KD model with positiveA. It is easy to show that in the

do so lead to “overflow” on the computer. This instability @0Sence of noiser(' = 0), an isolated pillar of heigft, will
was first observed by TEL2]; our results are quite similar to Initially grow in time if ho>10/. Consider an initial con-
those reported by him. The time at which this instability figuration in which all sites except the central one have
occurs shows large run-to-run variations, with the averag®i=0 and the central site has a heigg>0 (a negative

value decreasing with increasing A similar instability is ~ v&lue ofho would correspond to a groove at the cent&he

found in the KD model. Since the height variable in this initial value of time derivative of the height at the central site

atomistic model can increase by only one unit at a time, therés €asily evaluated from Ed5) to be —6ho+\hg/2. Simi-

is no divergence here. The instability in this model shows ugarly, the initial time derivative of the height at one of
as a rapid increase of the interface width which correspondgearest-neighboring sites of the central one is obtained to be
to a changeover from a power-law growth with an exponenétho—Ahg/2. Clearly, the rate at which the difference be-
close to 1/3 to a linear growth in time. The results obtainedween the heights at the central site and at one of its nearest-
from a simulation of the KD model with=1.0 are shown in  neighboring sites initially changes with time is positiie.,
Fig. 3. The occurrence of an instability nea 100 is clearly ~ the height of the pillar increases initiallyf hy>10/\. No
seen in the figure. It is interesting to note that the behavior ofinalytic method is available for following the evolution of
W and{o,} before the occurrence of the instability is very this state for longer times or for taking into account the ef-
similar to that found in simulations for small valuesiofsee  fects of the stochastic noisg . We therefore do this numeri-
Fig. 2. The occurrence of this instability was reported in cally and check at regular time intervals whether the nearest-
Ref. [7]. Thus, the observation of these instabilities is notneighbor height difference at the central ditefined as the
new. Our results are about the origin of this instability, thelarger of the two height differences on the two sidesceeds
apparently “generic” nature of this instabilitiin the sense hg or not. By repeating this procedure a large number of
that it appears to be present in discretized versions of othdimes, we are able to calculate the probabilRy7) of the
commonly studied nonlinear growth equations such as th@earest-neighbor height difference at the center exceeding
KPZ equatio, and the role it plays in the multiscaling phe- the initial valueh, at a later timer. The results of such a
nomena observe[B—10] in simulations of atomistic growth study (for L=100, A=1.0, A7=0.01, 2000 independent
models. rung are shown in Fig. 4. The probability of height increase
We carried out a detailed investigation of the origin of is found to be very close to zero for small valueshgf The
this instability in the discretized LD equation and the KD growth probability begins to be nonzero as the valudgf
model and found that this instability is caused by the growthexceeds 1%/. For values ohy which are slightly higher than
of isolated structures, such as pillars and grooves, on a fldtO/\, the growth probability is initially close to unity, but it
interface. Either pillars or grooves are unstable in a particuladecreases rather quickly to zes®ee the data fdn, = 14 and
system; which one is unstable is determined by the sign o017 in Fig. 4, indicating that the height eventually decreases
\. This asymmetry between pillars and grooves results fromafter an initial increase. The rate of the initial growth of the
the fact that the growth equations we consider are not invariheight and the length of the time interval over which the
ant undeth— —h. We find that pillars with heights exceed- height remains greater tham, increase withhy. As hg is
ing a certain “critical” value(which depends on the value of increased further, we encounter the instability mentioned
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FIG. 4. Growth probability(see text of a pillar in the 1D dis-

cretized LD equationX=1.0, A7 = 0.01, 2000 runs oh = 100 FIG. 5. Growth probability of a pillar of initial height, in the
sampleg as a function of timer. Results for three different values, 1D discretized LD equation\( = 1.0, 2000 runs orL. = 100
14, 17, and 20, of the initial heiglty are shown. samples at time 7 = 1 as a function oh,, calculated with three

different values, 0.01, 0.001, and 0.0001, of the integration time

above. The height differences near the center grow very rapiePA .
idly, leading to overflow on the computer. To avoid this
problem, we stop the simulation of the time evolution when
the maximum value of the nearest-neighbor height differenc
exceeds a preassigned cutoff value. This cutoff was chose

to be .1.000 for the data shpwn in Fig. 4. Th‘? results ar%o at the central site and zero everywhere, the first term on
insensitive to the value of this cutoff as long as it is large. Inthe right-hand side of Eq(5), which tends to stabilize the

all runs stopped in this way, the nearest-neighbor height dlf'system, is proportional thy at the central site and its nearest
ference at the central site is found to be larger thgamvhen

the run is stopped. These runs are counted as ones in whiéﬁghbors' The second term on the right-hand side of%jq.

with A= 20.0 for the LD equation. Our numerical results for

the values oh; are shown in Fig. 6. The proportionality of
to 1/A may be understood from a simple dimensional

gument. For a configuration in which the height variable is

the nearest-neighbor height difference at the center woul ich is the one responsible for the instability, is propor-

: ; ional to\h3. It is, therefore, obvious that the value nf at
remain greater thah, at later imes. In fact, the large value which the destabilizing term wins over the stabilizing one
of the probability atr = 1 for hy = 20 (see Fig. 4 arises 9 9

should be proportional to 4/ The value of the coefficient of

exclusively from such runs. In other words, the height dif- ; . : L ;
ference at the center becomes smaller thawithin a short proportlonahtyA is nontrivial and has to _be determmed nu-
merically. We have also carried out similar calculations us-

time if the height differences do not exceed the cutoff value . . S .
during the time evolution of the system. This observationnd & more accurate, flve-p.0|r.1t def|n|t|(@_m8] Of. the lattice
and the results of a rigorous analyE2€] of t.he LD equation derivatives. We find very similar behavior, with a value of

without noise suggest that the instability described above ighe. parameteA which is _smallerthan 20. Th'?‘ observatlor_1
not a true finite-time singularity: the height of the pillar indicates that the behavior described above is not an artifact

eventually decreases after reaching a large but finite valué).f using overly simple expressions for the lattice derivatives.

Here, we do not address the issue of occurrence of a finite-
time singularity in this model because it is virtually impos-

sible to determine numerically whether a true divergence of
the height occurs or not. This question is not crucial to our
study: as described in Sec. IV, our main results are derived

from models in which the growth of the height difference is =
cut off at a finite value. =

As shown in Fig. 4, the probability of growth becomes
essentially independent of time near= 1. Figure 5 shows
how the probability at- = 1 depends on the value bf. We
show data obtained using three different values, 0.01, 0.001,

and 0.0001, of the time stefy7. The observation that the Py P S I
results obtained for these three very different values of 1 2 3 4 5
are nearly identical shows that this instability is not a nu- A

merical artifact of not using a sufficiently small value of the
time step. From data of this kind, we define a “critical”

height h, for which the probability of growth is 0.5. Our

results indicate that the dependencéngbn \ is of the form

FIG. 6. The dependence bf, the critical height of a pillafor
the depth of a groove, see tgxbn the coupling constamt in the
discretized LD equation in one and two dimensions and the dis-
cretized KPZ equation in one dimension. The results shown were
obtained from numerical integrations with7 = 0.01. The solid
ho(N)=A/\ (16) lines are the best fits to the forln(\)=A/\.
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FIG. 7. Development of the instability induced in the 1D dis-  FIG. 8. Development of the instability induced in the 1D dis-
cretized LD equationX = 1.0) by the presence of a pillar of initial  cretized KPZ equation\ = 1.0) by the presence of a groove of
heighth, = 25. Interface profiles at times = 0.05, 0.1, 0.15, and initial depthh, = 30. Interface profiles at times = 0.1, 0.3, and
0.17, obtained for & = 100 system usings7=10"*, are shown. 0.5, obtained for & = 100 system using. 7= 104, are shown. In
In the initial state, the height is zero everywhere except at the 50tlthe initial state, the height is zero everywhere except at the 50th
site, where the height il,. site, where the height is h,.

The development of the instability induced in the dis-The dependence ofh, on N is well-described by
cretized 1D LD equation by the presence of a high pillar inh (\)=A/\ with A= 31 (see Fig. 6.
the initial state is illustrated in Fig. 7, where we show the The instability in the discretized KPZ equation, E6), in
height profiles at timeg = 0.05, 0.1, 0.15, and 0.17, ob- one dimension with\>0 is associated with grooves, not
tained by integrating the discretized LD equation pillars. We have studied the 1D KPZ equation with and with-
(L=100, A=1.0, A7=10 %) from an initial state in which out noise and found the instability to be very similar in the
the height is zero everywhere except at the central site whettavo cases. The critical value &, (the depth of an isolated
the height ishy = 25. This value ofh, is higher than the groove in the KPZ equation is determined using a procedure
critical heighth, for the value ofA used. As expected, the similar to the one described above for the LD equation. The
height of the pillar at the center grows rapidly in time. At the instability criterion we use for the KPZ equation is slightly
same time, alternate grooves and pillars form on both sidedifferent from the one described above. We define the prob-
of the initial pillar and these groovépillars) become higher ability of occurrence of an instability as the ratio between the
(deeper as time progresses. The formation of these groovesumber of runs in which the maximum nearest-neighbor
and pillars is a consequence of the conservation law builheight difference exceeds a preassigned cutoff vétialeen
into the LD equation. In the run depicted in Fig. 7, the maxi-to be 1000 in our simulatiofngnd the total number of runs.
mum value of the nearest-neighbor height difference exAs noted above, this instability criterion coincides with the
ceeded the cutoff of 1000 at time= 0.2. criterion of the value of the nearest-neighbor height differ-

Very similar results are obtained for the atomistic KD ence at the central site exceedimgin the LD equation. This
model. A little algebra, similar to that described above,is not so in the 1D KPZ equation. In some of the runs, we
shows that in this model, an attempt to deposit a “particle” find that the value of the nearest-neighbor height difference
at the site of a pillar of initial heighhy or at one of its at the central site is smaller than, when the maximum
nearest-neighboring sites leads to an increase in the height gélue of the nearest-neighbor height difference reaches the
the pillar if ho>12/\. Our simulationgwhich are exact be- cutoff. Evidently, the presence of a deep groove in the initial
cause all variables in this model are discyetrow that the state induces the formation of large height differences at
height of a pillar continues to grow linearly in time if its points which do not always coincide with the initial location
initial value is somewhat larger than 22/The development of the groove. The development of the instability in the: 1
of the instability in this model is very similar to that shown discretized KPZ equation is shown in Fig. 8. The growth
in Fig. 7 for the discretized LD equation. profiles shown for times = 0.1, 0.3, and 0.5 are obtained

The instability described above appears to be generic téor aL = 100 system withx = 1.0, using an integration time
discretized versions of all commonly studied growth equastepAr=10*. The initial state is one in which the height is
tions containing nonlinear terms. In particular, we havezero everywhere except at the central site where there is a
found very similar results for two other systems: the LD groove of depth 30. As can be seen in Fig. 8, the groove at
equation in(2+1) dimensions and the KPZ equation in the center becomes deeper initially, but subsequently devel-
(1+1) dimensions. All the qualitative features of the insta-ops into a “mound” with large values of the nearest-
bility found in the 1D LD equation appear to be the presenteighbor height difference occurring at many points near the
in two dimensions. Pillars of initial height, become un- center. This is the reason why the maximum value of the
stable in the 2D LD equation with positive if hy>h,(\).  nearest-neighbor height difference does not always occur at
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1 e —— version of the linear diffusion equation. The reason for this
difference is simple: the algebra of derivatives does not ap-
° ply to difference operators if the nearest-neighbor height dif-
° e ferences are not vanishingly small. For this reason, the exact
hy=24 results available for the continuum equation do not in any
; My=25 way rule out the possibility of occurrence of an instability in
o o hy=26 the discretized equation for initial conditions with large
o nearest-neighbor height differences. Conclusions very simi-
O et lar to ours about the occurrence of an instability in th2 1
discretized noiseless KPZ equation have recently been ob-
S tained independently by Newman and Bf&f].
0 1 2 3 4 5 It is interesting to note that instabilities in numerical inte-
Time grations of the discretized KPZ equation in one and higher
dimensions were noted in previous studi#8]. These stud-
FIG. 9. Probability of instabilitysee textinduced by a groove jes, however, attributed the observed instability to “numeri-
of initial depthhg in the 1D discretized KPZ equation\ (= 1.0,  cal artifacts,” with the implicit assumption that the instabil-
2000 runs withA7 = 0.01 onL = 100 samplegas a function of ity would disappear if a sufficiently small value of the
time 7. Results for three different values, 24, 25, and 26, of thejntegration time steph r were used. Our work shows that the
initial height ho are shown. instability found in these studies is an intrinsic property of
the discretized equation whiatannotbe eliminated simply
the central site in this system. A comparison of Fig. 8 withby using a sufficiently small value df 7. The observation of
Fig. 7 clearly illustrates the important effects of a conservaan instability in the discrete version of the noiseless KPZ
tion law (which is present in the LD equation, but absent inequation in one dimension brings out another important point
the KPZ equationon the growth kinetics. The value of the which, to our knowledge, has not been noted in the existing
maximum nearest-neighbor height difference was found tditerature, namely, the behavior of discretized versions of
exceed the cutoff of 1000 at= 2.7 in the run for which the nonlinear growth equations may, under certain circum-
results are shown in Fig. 8. stances, be very different from the behavior of their con-
Typical results for the probability of occurrence of an tinuum counterparts. These observations have several impor-
instability in the 1D KPZ equation N=1.0, L=100, tant implications in the study of growth equations. In
A7=0.01, 2000 runsare shown in Fig. 9 for three different particular, one important and inevitable implication is that
values ofhy. As before, we defing. to be the value ohy at  the discrete version of a nonlinear continuum growth equa-
which the long-time value of the probability of instability tion may, in principle, belong to a universality class which is
reaches 0.5. The dependencehgfcalculated in this way on different from the universality class of the continuum equa-
the value of\ is shown in Fig. 6. As expected, we find tion. A full discussion of these implications is provided in
ho(A)=A/N with A= 25.0. The values di. shown in Fig. 6  Sec. V.
were obtained from numerical integrations using a time step So far, we have considered the time evolution of the dis-
A7 =0.01. We have repeated these calculations usingretized growth equations from an initial state in which a
smaller values ofA 7. The observed dependence of the cal-pillar or groove is present. A question of obvious importance
culated value ofh, on A7 is more pronounced than that is whether such structures are spontaneously generated dur-
shown in Fig. 5 for the 1D LD equation. However, any rea-ing the evolution of the system from a flat initial state. The
sonable extrapolation of the results obtained for differentanswer to this question is crucially related to the nature of
values ofA 7 to the A7— 0 limit yields results forh, which ~ dynamic scaling exhibited by the model under consideration.
are not significantly different from those shown in Fig. 6. Weln systems which exhibit normal scaling, the nearest-
have also checked directly the occurrence of the instability imeighbor height difference is not expected to grow indefi-
the 1D discretized KPZ equation without noise for initial nitely in time; it should saturate quickly after an initial
conditions containing a deep groove for valuestaf down  growth. Such a system would spontaneously exhibit the in-
to 107 7. stability discussed above only if the value at which the maxi-
Our conclusion about the existence of an instability in themum nearest-neighbor height differensg,, saturates is
discretized version of the noiseless 1D KPZ equation mayigher than(or at least, close jothe critical valueh,, de-
appear surprising in view of the well-known fact that the fined above. Sinch, decreases while the saturation value of
continuum KPZ equation without noise in one dimensionsyax generally increases with, we can define a nonzero
does nohave any instability. The continuum equation can be“critical” value, A, of N at which these two quantities be-
mapped to a simple linear diffusion equation by a Cole-Hopfcome equal. According to the discussion above, systems with
transformation and solved exactly. For any bounded initiavalues ofA substantially smaller than, are not expected to
condition, the asymptotic solution is one in which the heightshow the instability during their time evolution from a flat
variable is constant. The absence of any instability in thestate. In contrast, since nearest-neighbor height differences
continuum equation, howevedoes not necessarilimply  are expected to continue growing in time in models which
that the discretized version, E@), should also be stable for exhibit anomalous scaling, such systems should always show
any initial condition. This is because the application of athe instability at sufficiently long times, provided the system
Cole-Hopf transformation to the discretized versjgh Eq.  size is large enough to prevent saturation before the onset of
(6)] of the KPZ equatiordoes notreduce it to a discretized the instability. In other words) is expected to be zero for
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FIG. 10. Time dependence of the maximum nearest-neighbor F|G. 11. The average instability time, (see textas a function
height difference sy, in the 1D discretized LD equation of \ for the 1D discretized LD equatiorL& 1000, A7 = 0.01,
(A=4, A7=0.01, L = 1000, 200 rung the 2D discretized LD  ymber of runs= 150, 200, 500, 1000, 1000 for = 3, 4, 5, 6, 7,
equation § =5, A7 = 0.01, system size- 200200, 30 runsand  respectively and the 1D discretized KPZ equatioh # 10°, Ar
the 1D discretized KPZ equation €5, Ar=0.01, L=10% 200 0,01, 200 runs for each value bj. The arrow indicates a lower
runs. The solid line is a fit of the data for the 1D LD equation to pgoyng forr,s for the KPZ equation with. = 4. The solid line is a

the formsp,(7) =a+binz. fit of the LD equation data fon = 4, 5, and 6 to the form
_ A BIN?

ins=Ae> .

models with anomalous scaling. This conclusion is different’
from that of Tu[12], who interpreted his numerical results
for the discretized 1D LD equation as evidence for the exist
ence of a nonzera. in this system.

tionally definer;,s as the time at whicls,, 5, reaches a cutoff
value which is set at 1000. The instability time shows very

o ical its full tth | | large run-to-run variations, and we find it more appropriate
ur numerical resufts fully support tnese general concluy, average Im,g, rather thanr, itself, over different runs.

sions. In Fig. 10, we show the time dependence,gf;, the So, the data shown in Fig. 11 actually correspond to

maximum value of the nearest-neighbor height difference avéxp((lnrins)). The data for the LD equation were obtained for

eraged over a large number of runs starting from a flat statq_.:1000 A7=0.01. and averaged over 150 200. 500
The system parameters dre- 1000, A7=0.01, A=4.0 for 1000, an’d 1000.ind,ependent rur?s for= 3, 4, 5,,6, an;j 7 '

tfg OiD)\EI?S OeqL;ation;th systgg Sli_g"t 200><t.20(_)’ A7 q respectively. From the results of Eq46) and(18), and the
RS or € equation, - and - ¢,¢t that the coefficien of Eq. (18) is proportional to\, it

L=10, Ar=0.01, A=5.0 for the 1D KPZ equation. A easy to show that the dependencerpf, on \ in this
larger value ofL is needed for avoiding saturation in the . B/x2 - .
model should given by;,s~e*" . As shown in Fig. 11, this

KPZ equation because the value pffor this model is : e .
smaller. The quantit,., is defined in the following way form does provide a good description of the numerical data
for the 2D system: for small values of\. The fact that t_he values ofir_,s for A
=6 and 7 are lower than those predicted by the fit to the data
Smax=Mmaxs;}; for smallerh may be understood by noting that the initial
17) growth of s, With time is faster than that described by Eq.
si={[h(x+iA%) = h(x) ]2+ [h(x; +jAX) —h(x) ]2 Y2 (18). , _
The data shown for the 1D KPZ equation were obtained
The data shown were averaged over 200, 30, and 200 rurfgr L=10%, A7=0.01, and averaged over 200 runs. In 100
for the (1+1) LD, (2+1) LD, and (1+1) KPZ equations, runs of length 16 units, we did not find any occurrence of
respectively. As expectes,,,, Saturates quickly for the last instability for A = 4. From the observation that the distribu-
two models, which are expected to exhibit normal scalingtion of 7j,s has a long tail that extends to values much
behavior. In contrasts,, continues to grow in time in the Smaller than the average, we can derive a conservative lower

1D LD equation, which is expected to show anomalous scallimit of 1'06.Uf1it5 for the average instability time far = 4.
ing. The growth ofs,,,, in time in this model is well- This is indicated by the arrow in Fig. 11. These results

described by a logarithmic form strongly suggest that the value Xf lies between 4 and 5 in
this system. Consequently, the instability in this system may
Smax 7)~a+blinr, (18 be avoided by choosing a small discretization scate one

which would make the value of smaller than\ .. However,

where the parametds is numerically found to be propor- as noted before, the value &fin a real system can not be
tional to N. This logarithmic dependence @af,,, on 7 is  made arbitrarily small, and the instability can not be avoided
consistent with predictions of dynamical renormalizationif the “bare” parameters are such that,,>\..
group calculation$4,19]. It should be mentioned that the above discussion about

Figure 11 shows our numerical results fgf, the time  the possibility of occurrence of an instability in a system
at which the instability occurs when the system evolves fronstarted from a flat initial state is qualitative because it is
a flat initial state, for 1D LD and KPZ equations. We opera-based on a criterion that involves tlaweragevalue of the
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nearest-neighbor height differencg,,. Our simulations 3
show that the value of,,, at a particular timer exhibits
large run-to-run variations. The distribution §f,, shows a
long tail extending to values substantially higher than the o5
average value. This variation in the valuesgf, is the main
reason for the large fluctuations in the calculated value of o
Tins- SiNCE an instability is expected to occur whenever the
value ofs exceedsh., a system with a value of which is
lower than the\. defined above in terms of the average
value ofs,,x would exhibit the instability if a large value of 15 F
s lying in the tail of the distribution happens to be generated
during the time evolution. Since the tail of the distribution is
more likely to be sampled if the system size is large and if . Lo Lo
the simulation is continued for long times, the probability of 1T 2 10 20 100
occurrence of an instability in a system with<\ . would T »
increase with system size and simulation time. These consid-
erations show that a precise definition)af is problematic. FIG. 12. The ratiosry(7)/o4(7), q = 2, 3, 4, and 5, as func-
All we can say with certainty is that for sample sizes andions of time r for the 1D discretized LD equation with
simulation times used in typical numerical integrations of\ —4.0, L=1000, A~ = 0.01, averaged over 100 runs. The ob-
growth equations starting from a perfectly flat state, an instaserved growth of the values of these ratios with time indicates de-
bility would be very unlikely in a system exhibiting conven- viations from single-exponent scaling.
tional (rather than anomalouglynamic scaling if the value
of \ is significantly smaller than the critical valug defined  for the quantitie§oy}. When the instability sets in, the value
above. As discussed above, the results of our numerical iref the nearest-neighbor height differenseat the point of
vestigation of the time of instability are quite consistent withinstability becomes large and it grows rapidly in time. Since
this prediction. higher moments of (i.e., o for largeq) are more sensitive
We also note that the distinction we make between modto such large values f, the growth ofa, in time would be
els with\; = 0 (e.g., the 1D LD equationand those with  faster for larger values aj. The instability would also pro-
Ac>0 (e.g., the KPZ equation and the 2D LD equaji®  duce a long tail extending to large values in the distribution
appropriate only when one considers the evolution of thef s, leading to departures from single-exponent scaling for
system from a flat initial state. Models with nonzero valuesthe correlation function$G,}. As mentioned above, we do
of A¢ would show the instabilityeven if the value ot is  find approximate multiscaling in our simulations near the
smaller than\.) if the initial state has a sufficiently high onset of the instability. Typical data, obtained for the LD
pillar or a sufficiently deep groovg.e., if ho>h.(\), which  equation {=10°, A=4.0, 100 runsin one dimension, are
is finite for any nonzero value of]. If the LD and KPZ  shown in Fig. 12. The growth of the ratig, /oy with time is
equations are indeed the appropriate continuum descriptiongearly seen, especially for large valuesjoMWe have shown
of epitaxial growth, as is currently believéd,2] to be the  data only up tor = 100 because the instability is encoun-
case, then our finding of this generic instability for growth ontered at longer times and the time evolution of the system
a substrate with a high pillar or groove may have importanicannot be followed beyond the instability. Thus, the time
implications for real growth on patterned substrates, which isnterval over which multiscaling is observed in the systems
a subject of considerable current interest in materials scienceonsidered so far is very short. This is because the instability
in these systems is very “strong” in the following sense. In
IV. CONTROLLED INSTABILITY AND MULTISCALING the discretized growth equations, 'the time evolutiorj of the
system cannot be followed numerically beyond the instabil-
In this section, we describe in detail our numerical inves-ity time because the height variables become too large. In the
tigation of the connection between the instability describedcatomistic KD model, the height variables increase so fast
in the preceding section and multiscaling behavior. The exafter the onset of the instability that global variables such as
istence of such a connection was suggested by the followinthe width of the interface begin to show deviations from
observation made in our numerical studies of the discretizedcaling (see, for example, Fig.)3In order to explain the
LD equation and the KD model in one dimension. We foundnumerical results obtained in Ref8~—10], it is necessary to
evidence for multiscalingas indicated by the observed time- have a situation in which the global variables scale in a nor-
dependence of the ratias,/o;) during a short interval of mal way, whereas the quantities,} and{G,} show anoma-
time immediately preceding the instability. During this time lous multiscaling. The discussion above suggests that such a
interval, the interface width shows the expected scaling besituation may be realized if the instability is “controlled” in
havior, but the function$o,} appear to scale with different some way. We have considered two different classes of mod-
powers, the growth in time being faster for larger values ofels with controlled instability. In models of the first class, the
g. This observation suggests that multiscaling behavior maynstability is controlled by the introduction of terms with
be closely related to this instability. We, therefore, carriedhigher powers of the gradient of the height variable with
out a detailed investigation of this aspect. appropriate coefficients. The second class consists of atom-
It is easy to see that the instability described above wouldistic models in which the instability is controlled by modify-
in general, lead to deviations from single-exponent scalindng the deposition rule in a way that restricts the develop-
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! 2 1020 100 FIG. 14. The probability of growth of an isolated pillar in the
ho 1D CKD model A =2.0, ¢ = 0.02 as a function of time. These
data were obtained from 2000 runs on samples With= 100.
FIG. 13. The dependence of the quantitywhich measures the Results for three different values, 5.0, 25.0, and 45.0, of the initial
initial rate of growth of the height of an isolated pillar in the 1D heighth, are shown.
CLD model without noise, ohyg, the initial height of the pillar. The
results shown are foxr = 4.0 and three different values, 0.02, 0.03,
and 0.3, of the control parameter(see text A(hg)= E[h”_ hn-1] (20)
or the noiseless CLD model for a state with a pillar of

ment of flarge values of the nearestneighbor heigh 1eight hy at the nth site (i.e., for a configuration with

difference. These models and the results obtained from n h fori— dh-=0 for all otheri). Th its sh
merical studies of their behavior are described below. We'i ~ o fort=nanadh;=btorai o eri). The results shown

emphasize that there is no unique way to control the grovvﬂ{?lre forn = 2"0 ar_1c_j thre(T diff?Lerjt v?lueshof t::e c_o”ntrol
instability, and, in principle, there must be infinitely many parameterc. A positive value oid Impiies that the pillar

different ways to do it. We have tried several simple tech-initi."’ll.l)_' grows in time. As djscussed i.n th? preceding section,
niques of controlling the instability using minimal number of &N initial growth of the height of a pillar is a necesséoyt

parameters, as described in the next two subsections. In geﬁg_t su{ficie?l CO”‘::“O;? for th?\ occ#rrenge of the inzt.?bili;y.
eral, for a given atomistic growth moddk.g.. the DT It iS clear from the figure that there is no instability for

mode), the instability may be controlled in an unknown and ¢=0-3, while the model would exhibit an instability for val-
necessarily nonuniversal manner. ues ofhg lying within a limited range foc = 0.05 and 0.02.

The range oh, values for which the instability is expected

to occur clearly becomes wider as the valuecofs de-

A. Controlled instability models with higher powers creased. Simulations carried out for the CLD model with
of the gradient noise show an essentially similar behavior. The CKD model

The models we consider in this section are obtained by/SO behaves in a very similar way. Figure 14 shows the

i Shi2 S probability of growth of an isolated pillar of initial height
]rcep%a;]mgg thﬁVh'fl . tet;]m fap|>|pe§r|ng |nII.Eq9{5)fandt.(11? by hy in the CKD model withh = 2.0 andc = 0.02. The
(IVhi[%), wheref is the following nonlinear function: growth probability is defined as before as the fraction of runs

f(x)=(1—e ¥/c. (19) in which the nearest-neighbor height difference at the site of
the pillar exceed$,. The growth probability is found to be
close to zero at all times fdry = 5 andhy = 45, indicating
In the equation above, is an adjustable parameter. Note thatthat these values are, respectively, lower tHap, and
this replacement corresponds to the introduction of an inﬁ‘nigher thanh,,.,. For h, = 25, on the other hand, the
nite number of higher-order nonlinear terms of the formgrowth probability increases quickly to a value close to unity
|Vh;|?" with specific coefficients which depend on the valueand then falls off at long times. Thus, the instability for large
of c. In the following, we call this modified version of the value ofh, is controlled in the new models by the introduc-
discretized LD equation thesontrolled Lai-Das Sarma tion of an infinite series of higher powers of the derivative
(CLD) model and the modified version of the KD model is with appropriate coefficients. This is physically reasonable
referred to as theontrolled Kim-Das SarmaCKD) model.  because terms involving higher powers of the derivative are
The functionf(x) behaves ag for x<1/c and approaches a expected to come into the picture when the derivative itself
constant value, &/ in the limit x>1/c. It is easy to show becomes large.
that the growth instability of isolated pillars found in the  We have studied numerically the behavior of both CLD
original LD equation and the KD model is completely sup-and CKD models for different values of and c. The nu-
pressed if the value af is higher than a critical value which merical divergence found in the original discretized LD
depends on the value af. For values ot smaller than this equation disappears completely for any nonzero value. of
critical value, the instability occurs for an isolated pillar if its This result confirms that the instability we found in the origi-
height lies within a rangé i (\,c) <hg<ha{\,c). This  nal LD equation is a genuine one, not an artifact of our
is shown in Fig. 13, where we have plotted the quantity = numerics. The behavior we find in these two models are
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FIG. 15. The rms interface widtW as a function of timer for
the 1D CLD model §=4.0, L=1000, A7 = 0.01) with two val- T
ues ofc (10 runs forc = 0.02 and 40 runs foc = 0.05, and for
the 1D CKD model £ =2.0, L = 1000 with two values ofc (200

runs forc — 0.02 and 10 runs foc = 0.005. FIG. 16. The rms interface widthV and the momentsr,,

g=1-4, of the nearest-neighbor height difference as functions of
time 7 for the 1D CKD model § =2, ¢=0.02, L = 1000, aver-
qualitatively very similar. For values @f which are so large  aged over 2000 runsinset: the ratiosry(7)/o1(7), q = 2, 3, and
that the instability is completely absent, we find conventional4, as functions of time-. The data shown in the inset were averaged
scaling with exponents close to the expected values. For veryver 200 runs.
small values ofc, the instability is very “strong” and we
find deviations from scaling for global quantities such as theoccurs at more and more points in the system. The number of
interface width. Typical results are shown in Fig. 15, wherepoints at which a fresh instability can occur decreases in this
we have shown the time dependence of the interface widtprocess. Also, effects of the instability become less pro-
W for the CLD model [ =10°, A=4.0) with two values of nounced at long times because the typical valus, afhich
¢ (10 runs forc = 0.02 and 40 runs foc = 0.05, and for increases with time even if there is no instability, becomes
the CKD model L = 103, A = 2.0), also with two different comparable td,, at sufficiently long times. So, the insta-
values ofc (¢ = 0.02, 200 runs and = 0.005, 10 runs In bility is expected to become ineffective at long times. If mul-
both models, the results for the larger valueco§how the tiscaling arises due to the instability, then one expects to see
expected power-law scaling in time, whereas the data for thewltiscaling only during the finite-time interval over which
smaller value ot exhibit a “strong” instability at which the the instability is active. This is precisely the behavior we find
scaling behavior ofV breaks down. It is interesting to note in the simulations. In Figs. 16 and 17, we show a represen-
that the growth ofW before the occurrence of the break in tative  set of simulation results obtained for
the curves for the smaller valuesofs almost indistinguish- L=1000, A=2.0, andc = 0.02, averaged over 2000 runs.
able from that seen for the larger valuescofor which the  For these values of andc, hp,j,= 6.0 andhy,,,= 34.0. As
power-law growth continues until long times. Thus, the scal-shown in Fig. 16, the rms interface widi shows excellent
ing behavior ofW even in the “strongly” unstable situation scaling with an exponent close to 1/3. The quantifieg},
mimics the ordinary power-law growth up to the instability however, show clear evidence of multiscaling during the
onset time which may be very long, depending on the valuetime interval betweerr~ 5 andr~ 1000. Power-law fits to
of the parameters in the model. As noted in Sec. llI, similarthe data over this time interval yield the following values for
results were obtained for the origin@alncontrolled models the effective exponents:x;/z=0.14+0.02, a,/z=0.17
also. The plots in Fig. 15 show explicitly the similarity be- =0.02, a3/z=0.22+0.02, a,/z=0.26-0.03. These ex-
tween the behavior of the two models. We describe belowonent values are similar to those found in H&. for the
results obtained for the atomistic CKD model because simuiD DT model. As shown in the inset of Fig. 16, where we
lations of this model are easier, so that better statistics can bdeave plotted the time dependence of the ratigéo; for g
obtained. Very similar results, but with poorer statistics,= 2, 3, and 4, the multiscaling is not present at very early
were obtained for the CLD model. times and also at times longer than about 1000. By monitor-
Interesting behavior is found in simulations of the CKD ing the time development of,,,,, we find that7~1000 is
model with intermediate values offor which the instability — precisely the time at which the instability begins to level off.
occurs for a limited range of values bf. For such values of We have carried out much longer runs for smaller samples
c, the instability is expected to be operative over a limitedand found that multiscaling of oy} is absent for all
time interval. At very early times, the values sfare small 7> 1000.
and no instability occurs. As time progresses, the instability In Fig. 17 we have plotted the correlation functions
sets in when the value o,y crosseshy,,. The value of {Gg} for the same system at time= 1000. Multiscaling is
s at the point of instability grows rapidly in time until the clearly seen, with the following exponent values calculated
growth is cutoff ath,,,,,. At subsequent times, the instability from power-law fits to the data for I<10: {;
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FIG. 17. The height-difference correlation functio@g(l), q
= 1-4, at timer = 1000 as functions of the separatibfor the 1D FIG. 18. Scaling plot for the dependence of the interface width
CKD model (=2, c=0.02, L = 1000, averaged over 2000 WV inthe 1D CKD model {=2.0, ¢ = 0.02 on timer for systems
rung. The solid lines are power-law fits to the datalfer 10. Inset:  with different sizesL. The data for. = 20, 40, and 80 were ob-
the ratiosGq(1)/G4(1), g = 2, 3, and 4 as functions of the sepa- tained by averaging over 2000, 1000, and 1000 runs, respectively.
ration|. The values of the exponents used in this scaling plot are
«=1.35, B = 0.355.
=0.74+0.03, {,=0.66-0.03, {3=0.58-0.03, and {4
=0.50+0.03. These exponent values are also similar to thos
found in Ref.[8] for the 1D DT model. The multiscaling
behavior forl< 20 is clearly illustrated in the inset, where
we have plotted the ratidS,(1)/G4(I) forq = 2, 3, and 4 as
functions ofl.

Hsed in the scaling plot are = 1.25 andB = 0.355. Thus,

it is clear that the CKD model with these parameters exhibits
the expected scaling behavior for the global quantdy
These exponent values, when combined with the values of
the exponentsy,/z and ¢, quoted above, satisfy the ex-

. . pected relationx,+ {,= « within error bars, although there
We have also investigated the dependenc&Vobn the ;641 to be systematic deviations from this relation for large

sample size in this model for small values di. The ime ¢ "v/ery similar results were obtained in R¢8] for the DT
dependence d¥ in a sample of length. is expected to be yggel

described by the finite-size scaling equation We have also calculated the distribution of the nearest-
1 neighbor height difference at long times. Results for the
W(r,L)=7Pf(Lr~ ). (21)  CKD model withx = 2.0 andc = 0.02 are shown in Fig. 19.

We show the distributioP(s) for two different cases: for a
The scaling functiorf(x) in Eq. (21) goes to a constant as system with L=10° (averaged over 2000 runsat time
x—o (7<L?), so that the interface width grows a§ at  7=1000 (the time at which multiscaling ihoy} tapers off;
early times. From the data shown in Fig. 16, we estimate thgee Fig. 1§ and for a system witi. = 80 (1000 run$
value of B8 to be close to 0.35. The scaling function behavesaveraging over the time interval>610*< r<5x 10 in the
as f(x)~xP? in the x—0 limit, so that at times long com- saturation regime. In both cases, the distributios isffound
pared toL?, the interface width becomes time independentto be strongly non-Gaussian with a long tail extending to
and proportional td_“ with «= Bz. The value of the expo- large values o&. As shown in the figure, a power-law form,
nent « is estimated to be close to 1.25 from the observed®(s)«s™ 7, provides an excellent fit to the data over more
sample-size dependence of the interface width at saturatiothan four decades. The best-fit value of the expongot the
These exponent values correspondzte 3.5. The scaling power law is found to be 3.2 for the = 1000 system and

equation(21) can also be written as 2.5 for theL = 80 system. This power-law behavior is dif-
ferent from the result obtaindd@] for the 1D DT model in
W(r,L)Le=g(rL~*'F) (22)  which P(s) appears to show a stretched exponential behav-

ior. As shown in the inset of Fig. 19, a stretched exponential
so that for a proper choice of the values of the exponentform with a stretching exponenrt 0.6 provides a good fit to
a and g, the data for different. and 7 should collapse to a our L = 80 data for small values df, but fails at larger
single scaling curve whew L is plotted againstL ~“/#. A values.
scaling collapse of the data obtained for three different val- These results clearly show that multiscaling behavior very
ues(20, 40, and 8pof L for the CKD model witth=2.0 and  similar to that observed in Reff8—10] can be generated by
¢=0.02 is shown in Fig. 18. The number of independent runs controlled instability of the kind described above. It should,
used in generating the data shown is 2000 forhowever, be noted that the multiscaling we find is transient
L= 20 and 1000 forL =40 and 80. The exponent values in the sense that it occurs only over a limited range of time.
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FIG. 19. Distribution of the nearest-neighbor height difference Site Number

sin the 1D CKD model § =2.0, ¢ = 0.02. Results are shownfor  pjg. 21, Typical profile of the interface generated at time
L=1000, = = 1000(averaged over 2000 runand also fol. =80  .—1¢* in the 1D CKD model with A=2.0, ¢=0.02, and
in the saturation regime (§10°< 7<5X 10°), averaged over 1000 | —1000. The average height which, by definition, is equat, toas

runs. The solid lines represent fits of the data to the power-lawyeen subtracted from the values plotted along the vertical axis.
form, P(s)xs™ 7, with » = 3.2 for theL = 1000 data andy = 2.5

for theL = 80 data. The inset shows the best stretched exponential . .
fit to theL = 80 data for small values of 1D CKD model withx = 2.0 andc = 0.02. Both prOflleS are

obtained for samples with = 1000 after the deposition of

A careful look at the data of Ref§8—10] suggests that the 104 Iayers. The average valu_e has been sgb'graqted off from
same is true for the atomistic models studied in these paperd!€ heights plotted in these figures. The similarity between
The approximate multiscaling we find is nonuniversal: thetN€se two profiles becomes evident when one is inverted
effective exponents, and a,, extracted from our numerical 'elative to the other, i.e., if the transformatidn- —h is
data seem to depend on the way in which the instability idnade in one of th_e proﬂlgs. This transformation is equivalent
controlled. Similar nonuniversality is also found in the ato-t0 changing the sign of in the CKD model. Thus, the DT
mistic models studied in Ref§8—10]. model appears to_ be S|m|Iar_ to the CKD modahd also to

The similarity between the CKD model with appropriate the CLD mode) with a negative value of. The asymmetry
choice of the parameters and the DT model is also illustrate§€tween the peaks and troughs of the profile is evident in
by a comparison between the growth profiles in the twoPOth Figs. 20 and 21. In the 1D DT modéfig. 20, the
models. Since both these models are atomistic in nature, R&aks of the profile are generally rounded and the troughs
makes sense to compare the growth profiles obtained at tHgnd to be very sharp and “spiky.” The profile also wanders
same value of the discrete time measured in units of numbét longer distance from the baselit@verage heightin the
of layers deposited. In Figs. 20 and 21, we show typicapegatlve direction. Both these features are reversed in the

growth profiles in, respectively, the 1D DT model and theProfile obtained in the 1D CKD modgFig. 21). The reason
for this “inversion” is quite simple. The profile obtained in

the CKD model with positivex exhibits sharp peaks and

0 ' ' ' ' ' wanders a longer distance on the positive side because pillars
are unstable in this model. The situation is reversed in the
20 DT model because, as shown below, grooves have a finite
ﬂ ﬂ [’\ nﬂﬁ probability of getting deeper in this model. This difference
0 .y /\ (ﬂ ) can be eliminated simply by changing the signxofn the
= I r U K CKD maodel.
-é“ 220 | .
a0t ) B. Controlled instability models with modified deposition rule
We have constructed and studied by simulations a modi-
-60 . fied version of the atomistic KD model in which the deposi-
tion rule is changed in order to control the growth of nearest-
-80 . neighbor height differences. This study was motivated by the

following observation. In order to explore further the con-

nection between controlled instability and multiscaling, we

studied by simulations the evolution of isolated pillars and
FIG. 20. Typical profile of the interface generated at time grooves in the 1D DT model. We start with a configuration

7=10" in the 1D DT model withL = 1000. The quantity plotted Which is flat everywhere except at the central point, where

along the vertical axis is the deviation of the height from the aver-there is a pillar of heightty or a groove of depthy. We then

age height which, by definition, is equal to simulate the time evolution of this state and measure the

0 200 400 600 800 1000
Site Number
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probability that the absolute value of the nearest-neighbor 0.1
height difference at the central site excebgsat timer. We

find that the probability of a pillar becoming higher is strictly
zero whereas grooves have a nonzero probability of becom-
ing deeper. Thus, the asymmetry between grooves and pillars
found in the models described above is present in the DT
model also. It is not difficult to explain the origin of this
asymmetry. Consider a configuration in whichis zero ev-
erywhere except at the site whereh,=h,. For a positive

hy (a pillar at siten), a particle deposited at sitediffuses to

one of its nearest-neighbor sites because the number of 0.02 -
bonds at siten is one whereas the number of bonds at the
sitesn+1 and n—1 is two. Particles deposited at sites o) = T R L
n+1 andn—1 do not diffuse because each of these two sites 0 1 2 3 4
have two bonds. Thus, there is no deposition sequence which T

can increase the height differencelh,—h,_;] and

[hn—hy.4|. In contrast, for a negativé, (a groove at site FIG. 22. The probability of increase of the depth of an isolated
n), there are certain deposition sequences which INCréastqove of widthw = 1 in the 1D DT model as a function of time

these height differences. Consider, for example, the sequenceTe data were obtained by averaging ovef fiins on samples
in which a particle is first deposited at the site 2 and then  yjth L = 32. This probability is independent of the initial depth
another particle is deposited at the site-1. The particle  h, of the groove for alh,>10. Inset: the probability of increase of
deposited ah+ 2 stays there because although this site hashe depth of an isolated groove of width = 3 in the 1D DT
only one bond, the nearest neighbors of this site also haveodel. Results obtained by averaging over 1000 run ca 128
only one bond each. The particle deposited subsequently atmples are shown for initial deptia=30 andh,=90.
n+1 also stays at this site because it now has two bonds.
The difference between the heights at siteandn+1 in-  the probability that the difference between the height at the
creases in this process. Therefore, the probability of a grooveentral site of the groove and the average height outside the
becoming deeper in the course of time should be nonzero igroove is greater thah, at time 7. As shown in the inset of
this model. This simple picture also implies that this prob-Fig. 22, where we have plotted the results for= 3 and
ability should not depend strongly dmn, the initial depth of hy= 30 and 90(these results were obtained by averaging
the groove, as long ds, is not very small. We believe that over 1000 runs on samples with=128), this probability is
the nonzero probability of grooves becoming deeper is thguite high and it decays rather slowly with time. The prob-
basic reason for the occurrence of large values of the nearestbility of a groove getting deeper is found to increase with
neighbor height differencéwhich lead to multiscalingin  increasingw and hy. The decay of this probability in time
the 1D DT model. This belief is supported by examinationsbecomes slower as the valuesvefand/orh, are increased.
of the height profiles generated in simulations of the 1D DTDetailed examination of the configurations generated in the
model which show that large values of the nearest-neighbaimulations shows that the difference between the height at
height difference almost always correspond to deep groovethe center of the groove and the average height outside the
in this system(see, for example, Fig. 20 groove does not increase much beyongl but remains
The results of our simulations on the 1D DT model, ob-slightly higher thanh, with a high probability over a rela-
tained by averaging over 2Quns on aL = 32 sample, are tively long period of time which increases with and hy.
shown in Fig. 22. The data shown were obtained forThis behavior may be understood in the following way. Con-
ho=100. The same behavior is found for all values ofsider a groove witlw = 3 centered at the site. Each of the
ho>10. These results are consistent with the simple pictur@earest neighbors of the central sitéhas two bonds in the
described above. The probability of increase of the depth oihitial state. Therefore, particles dropped at one of these two
a groove is found to increase initially with time, reach aneighbors of the central site stay at that site, and the central
maximum nearr=1 and decay slowly to zero at longer site does not get any particle from its nearest neighbors dur-
times. The shape of the probability vs. time curves in thising the initial time evolution of the system. There is, how-
model is qualitatively similar to that of the curve shown in ever, a finite probability for a particle dropped at the central
Fig. 14 forhy = 25 in the CKD model. There are, however, site to move to one of the neighboring sites. This would
large quantitative differences between the two curveshappen, for example, if the heights at the sitesn+ 1, and
Clearly, the probability of growth of the nearest-neighborn—1 are equal. So, the rate at which the height at the central
height difference is substantially smaller and decays faster isite grows initially is slightly lower than the rate of growth of
time in the DT model. We have also investigated the timethe average heigtitvhich, by definition, is one layer per unit
evolution of wider grooves in the 1D DT model. A groove of time in this model. These considerations do not apply at
depthh, and widthw corresponds to an initial configuration long times when the groove begins to fill up. For this reason,
in which the height is —hy at the sites the probability of the groove getting deeper begins to de-
n,n+1,... n+w—1, and zero everywhere else. All values crease at long times, making this “unstable” behavior a
of n are equivalent because periodic boundary conditions ar®ng-lasting transient. The slow decay of this transient be-
used. From simulations of the time evolution of initial con- havior for large values ofv and h, may have important
figurations with different values ofv and h,, we calculate implications for real growth on patterned substrates.
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An important difference between the results obtained for 0.5
the DT and CKD models is that the growth probability is

close to zero fohy>h,,,x in the CKD model, whereas it is 04FE: hy =10
almost independent df, (for w = 1) or an increasing func- - hg = 30
tion of hy (for w=3) in the DT model. This is probably the 203/ — .=
- e 3 . hy =50
reason why the 1D DT model exhibits multiscaling over a I ’, o e = 70
longer period of time than the CKD modéh the 1D DT {g 02k 0~

model, multiscaling lasts for at least six decades in time
[8—10], compared to about three decades in the CKD model %
This observation suggests that a controlled instability model .
in which the growth probability remains nonzero for large o) PR Lo
values ofhy may exhibit multiscaling behavior over a longer 0 10 20 30 40 50
period of time. It is difficult to construct such a model along T

the lines described in Sec. IV A. This is because an increase

in the. value offmax, Whi.Ch can be achieyed e.i'.[her by in- 1D modified KD model(see text with A=2.0, u = 0.06, as a
creasingh or by decreasing, makes the instability strong, function of time. These data were obtained from 2000 runs on

leading to deviations from scaling for global quantities suchgyyyjes with. = 100. Results for four different values, 10, 30, 50,
asW (see, for example, Fig. 15We, therefore, constructed 4,4 70 of the initial heighb, are shown.

a different class of atomistic models in which the instability
in the original KD model is controlled by an appropriate its nearest neighbors. So, in some cases, the deposition of a
modification of the deposition rules. We describe below ongparticle at a site other than the sitdeads to an increase in
such model and the results obtained from simulations of thishe value of some nearest-neighbor height difference, and
model in one dimension. such increases are not controlled by the parametedne
The deposition rule in this model is designed to restrictcan, in principle, include such checks in the deposition rule,
the development of large values of the nearest-neighbdout this would make the rule very complicated and difficult
height difference. As in the KD model, the height variablesto simulate efficiently.
in this model are discrete and time is measured in units of Figure 23 shows our simulation results for the probability
number of layers deposited. The deposition of a particle inof growth of an isolated pillar of initial heighty in this
volves the following steps. A site is chosen at random andnodel withA = 2.0 andu = 0.06. The data shown were
the KD rules(described in Sec. llare used to determine obtained by averaging over 5000 runs for systems with
whether a particle is to be added to the chosen site or to orle=100. As expected, the probability of growth of isolated
of its nearest neighbors. Latbe the index of the site which pillars in this model decreases with increasimg but does
is selected for the addition of a particle according to the KDnot go to zero for large values &f. The magnitude of the
rules and lets;=|h,—h,_4;| and s,=|h,,;—h,| be the growth probability for large values dfi, in this model is
nearest-neighbor height differences at this site before the adimilar to that in the 1D DT model, but the probability de-
dition of the particle. The addition of a particle at site cays faster in time in the DT model. The observation of a
would change the values of both ands,. If both s, and  nonzero probability of growth of pillars with large values of
s; would decrease due to the addition of the particle at sitd, suggests that the time interval over which this model ex-
n, the particle is added at sitewith probability one. If one hibits multiscaling behavior should be longer than that for
of these two height differences would increase while thehe CKD model with similar parameter values. This expec-
other one would decrease by the addition of a particle at sitéation is confirmed by our simulation results which are
n, then we definés to be the value of the height difference shown in Figs. 24 and 25 for a system with
which would increase. If both the height differences increasé. = 1000, A=2.0, andu = 0.06. The data shown represent
due to the addition of a particle at sitethen we defin&§to  averages over 200 runs. As can be seen in Fig. 24, the time
be the larger ofs; ands,. In these cases, the particle is dependence of the rms interface widtt shows excellent
deposited at site with probability p=exp(—uS, whereu is  power-law scaling withB= 0.35. The quantitiefo}, on the
an adjustable parameter. Operationally, this is done by gerether hand, show evidence of multiexponent scaling over the
erating a random number which is distributed uniformly entire time interval of these simulations. This time interval
between 0 and 1 and the particle is deposited atrsifiee.,  (10* units) is an order of magnitude longer than the time
the height variable at site is incremented by )Lif r=<p. If interval over which multiscaling was observed in the CKD
r>p, one of the two other sites originally considered for model (see Fig. 16 The fact that the{o,} with different
deposition is chosen randomly and the particle is depositedalues ofg do not grow in time with the same exponent is
there. This model reduces to the original KD model dio+ clearly shown in the inset of Fig. 24, where we have plotted
0. For small positive values afi, the modification in the the time dependence of the ratieg/ o, for g = 2, 3, and 4.
deposition rule disfavors but does not completely eliminateThe observed increase of the values of these ratios with time
the growth of large nearest-neighbor height differencesimplies that{o,} grows faster in time for larger values of
There is a second route by which large height differences. It is perhaps more appropriate to characterize the observed
may form in this model. When a site other than the siis  behavior of the{ o} asdeviation from single-exponent scal-
chosen for the deposition of a particle by the stochastic ruléng, rather than multiscaling. This is because log-log plots of
described above, it is not checked whether this deposition, vs 7 (Fig. 24 show substantial deviations from linear
would increase the height differences between this site anldehavior. For this reason, it would not be particularly mean-

O
PN

FIG. 23. The probability of growth of an isolated pillar in the



2250 C. DASGUPTA, J. M. KIM, M. DUTTA, AND S. DAS SARMA 55

80 T T T T
60 -
40 } 1
g 20 M .
£ L
0 WU o W / A
MRy
0 Cvvnnd el il gwwum 40 b E
(O T L T TV s , . . .
T 0 200 400 600 800 1000

Site Number
FIG. 24. The rms interface width and the momentsr,,
q=1-4, of the nearest-neighbor height difference as functions of FIG. 26. Typical profile of the interface generated at time
time 7 for the 1D modified KD modelX=2, u=0.06, L = 1000, r=10" in the 1D modified KD model withh=2.0, u=0.06, and
averaged over 200 rupdnset: The ratiosry(7)/o4(7), q = 2, 3, L = 1000. The quantity plotted along tlyeaxis is the deviation of
and 4, as functions of time. the height from the average height which, by definition, is equal to
7.

ingful to define the exponents,/z in this model. As noted port to the connection we propose between the DT model
above, similar(but less pronounceddeviations from pure and the models with controlled instability studied in this pa-
power-law behavior of thergs have also been observed in per. One could perhaps attempt to obtain better quantitative
simulations of the 1D DT model. The data for the correlationagreement between the multiscaling behavior in the DT and
functions {G,4(I)} measured at timer= 10* are shown in the controlled instability models by trying other variants of
Fig. 25. These data show clear evidence of multiscalingthe LD equation and the KD mod¢k.g., by trying other
with exponent values/;=0.79, ,=0.71, {3=0.62, and forms for the functionf(x) in Eq. (19) for the CLD/CKD
£,=0.57. These results show that multiscaling similar to model or by modifying the deposition rules of the KD model
that observed in thel DT model can be generated by con- in a different way. However, we do not see much purpose in
trolling the instability in the 1D KD model by appropriate Such an attempt becauég the multiscaling behavior is non-
modifications of the deposition rules. universal, as we have been emphasizing throughout this pa-

A typical growth profile obtained in the modified KD per, and(ii) such efforts are bound to be computationally
model withL=1000, A=2.0, andu = 0.06 after the depo- intensive, the number of possible modifications of the LD
sition of 10* layers is shown in Fig. 26. The similarity be- €guation and/or the KD model being arbitrarily large. We
tween this profile and the one shown in Fig. 20 for the 1Dbelieve that the results presented in this paper unambigu-
DT model(after making then— — h transformatiopis quite ~ ously establish thequalitative connection we propose be-
remarkable. All the characteristic features present in the Dtween controlled instability and the observed multiscaling in
model profile are also present in the profile obtained in théhe 1D DT model.
modified KD model. This similarity provides additional sup-

V. DISCUSSIONS

In this section, we discuss a number of questions that are
raised by the results obtained in our study. The work de-
scribed here leads to two main results—the first one is about
the presence of an instability in discretized growth equations
and the second one is about the connection between this
instability and multiscaling. Both these results have impor-
tant implications in the study of models of surface growth.
The observation of an instability in discretized versions of
nonlinear growth equations raises the question of whether a
similar instability is also present in the truly continuum limit.

510 20 100 As discussed in Sec. Ill, the presence of an instability in the
| discretized version of the 1D noiseless KPZ equatioes
notreflect the behavior of the corresponding continuum KPZ

FIG. 25. The height-difference correlation functioBg(l), g  equation which does not have any instability. It is not clear
= 1-4, at timer=10" as functions of the separatidrfor the 1D  whether the same conclusion would apply to the other
modified KD model §=2, u=0.06, L = 1000, averaged over growth equationgthe KPZ equatiorf22] with noise and the
200 rung. LD equation considered here, mainly due to the fact that no
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exact result is available about the behavior of these conef nonlinear growth equations has been obtained from stud-
tinuum equations. The work of Reff20] suggests that the ies of discretized versions. Our work, especially the results
noiseless continuum LD equation in one dimension does natbtained hergand also in Ref[21]) about the difference
exhibit a true finite-time singularity in the sense that thebetween the behavior of the discrete and continuum versions
height variable remains bounded by a value proportional to @f the noiseless 1D KPZ equation, raise serious questions
power of the system size. That work, however, does not rulabout the applicability of the information obtained from nu-
out the occurrence of an instability in which the height vari-merical integration of discretized growth equations to the
able increases very rapidly in time at one or more isolated¢ontinuum equations. Our simulations suggest that the re-
points in the system. In fact, the numerical results reported igults obtained from numerical integration of the discretized
Ref. [20] indicate that pillarlike structures initially grow in equations should apply to the continuum caselong as
height in the continuum system also. Throughout this papetthere is no instability This conclusion is suggested by the
we use the term “instability” to mean a rapid growth of the observation that the values of the “global” exponeitig,
magnitude of the height variable in a local region of theanda extracted from the results of direct integration of dis-
system. The rate of change of the height in the region of th&retized growth equations before the occurrence of the insta-
instability must be much faster than the corresponding rate iRility (or from runs in which no instability occurs, either due
the background. The rapid change of the height in the instalo the smaliness of or due to the imposition of contrpare
bility region need not lead to a true divergence. The questiof? good agreemer{within error barg with the exact(for the
of whether a true divergence occurs or not is interesting, butD KPZ equatioh or expectedfrom, e.g., renormalization
not very important for most practical purposes. For examplegroup calculations for the LD equatipresults for the con-
a rapid growth of the height variable at one or more points iffinuum equation. We quote here the values of the exponent
the sample may lead to deviations from scaling behavio8 Which is determined most accurately in our work. The
even if there is no true divergence. This is shown clearly incalculated value op for the discretized LD equation in one
Fig. 15. Also, it is almost impossible to distinguish in nu- dimension is 0.325- 0.01, and that for the discretized 1D
merical work between a true divergence and a growth to &PZ equation is 0.32+ 0.02. These values are in good
very large but finite value. The issue of a true divergence iragreement with the expected resyit= 1/3, for the 1D LD
the continuum growth equations is beyond the scope of ouequation and the exact resufs, = 1/3, for the 1D KPZ
work. equation. It would be useful to substantiate this conclusion

Several atomistic models which are believed to belong tovith further study.
the universality class of the KPZ equation or the LD equa- Our work also brings out the importance of terms which
tion are known not to have any instability. For example, theare often not included in continuum growth equations be-
restricted solid-on-solid model of Kim and Kosterlfi23],  cause they are irrelevant in the renormalization group sense.
which is believed to be in the same universality class as th&hese terms involve higher powers of the gradient of the
KPZ equation, cannot exhibit any instability of the kind be- height variable. It is well known that these terms are irrel-
ing considered here because the nearest-neighbor height dévant in the KPZ equation in one dimension and in the LD
ference cannot, by construction, exceed unity in this modelgquation in two and higher dimensions. This, however, does
Similarly, the recently introduced conserved versi@d] of ~ not mean that they are totally unimportant. The results de-
the Kim-Kosterlitz model, which is supposed to belong toscribed in Sec. IV about the possibility of controlling the
the universality class of the LD equation, also does not exinstability in the discretized growth equations by the intro-
hibit any instability. Another example is the model solvedduction of higher powers of the gradient with appropriate
exactly by Gwa and Spohf25] in one dimension. This coefficients indicate that such terms may play a very impor-
model, believed to belong to the 1D KPZ universality classtant role in the stability of the growth equations. These terms
is also known not to have any instability. These results, howdo not affect the values of the global exponents, but the
ever,do notprovide much help regarding the possibility of growth equation may be unstable if such terms are not in-
the occurrence of an instability in the corresponding con<luded. A recent paper by Marsili and Br§g6] makes a
tinuum growth equations. This is because these models cesimilar point. They consider an infinite-range version of the
tainly differ from the corresponding continuum growth equa-KPZ equation and show that this equation is unstable if cer-
tions by virtue of the presence of terms which are irrelevantain higher-order termgwhich are irrelevant in the RG
in the renormalization group sense. As shown in Sec. [Vsensgare not included. The instability they find is similar to
(and discussed in more detail belpwhe presence of such the one we have found in discretized growth equations.
irrelevant terms may control or eliminate altogether the in-There are well-known examples in equilibrium critical phe-
stability found in discretized growth equations. Therefore,nomena where formally irrelevant terrtte so-called “dan-
the absence of an instability in models which are in the samgerous irrelevant variableg'play a similar role in the con-
universality class as the continuum growth equatidogs trol of instabilities. Consider, for example, the standard
not imply that the growth equations do not have any insta-Ginzburg-Landau free energy functiorj@l7] for a scalar or-
bility. der parameterthe so-called¢* field theory. It is well

It is clear from the discussion above that the possibility ofknown[27] that the¢* term in this free energy functional is
occurrence of an instability in the continuum growth equa-irrelevant in the renormalization group sense if the dimen-
tions remains an open problem. We hope that our work willsion of space is higher than 4. However, thign of the
stimulate further investigation of this question. This questioncoefficientu of the ¢* term is very important because a
acquires special importance in view of the fact that a largenegative value ol leads to an instability. To control this
part of the currently available information about the behaviorinstability, one needs to introduce one or more higher-order
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terms (typically, a ¢° term) which are also irrelevant in the ing order mode-coupling analysis of R€L0] also suggests
renormalization group sense. The role played byd#figerm  that the marginal relevance of the higher-order terms may
in this example is qualitatively similar to the role of the play an important role in the multiscaling behavior. As de-
higher-order terms introduced in our models of controlledscribed in Sec. IV A, we do find approximate multiscaling in
instability. Another aspect of this examg7] from equilib-  models in which the instability is controlled by the introduc-
rium critical phenomena may also be relevant to the growthion of an infinite series of higher powers of the gradient with
problems being considered here. The Ginzburg-Landaappropriate coefficients. Therefore, there is a definite con-
model is known to exhibit strong crossover effects if it is nection between multiscaling and the coefficients of the
close to an instability, i.e., if the value of is positive but  higher-order terms. However, the values of the effective mul-
very small, the free energy density being singular in the limittiscaling exponentg, and {, obtained from our simulations
u—0. This crossover in this model is from apparent tricriti- do not satisfy the specific quantitative prediction of Ref.
cal behavioniwhich would be the asymptotic critical behav- [10]. Thus, on a conceptual level, there is a correspondence
ior for u = 0) to the usual critical behavior expected for between our finding of &‘controlled”) instability and the
u>0. These crossover effects lead to apparent nonuniversaifrared singularity underlying the work of Ref10]. How-
values of the effective critical exponents, and the correcever, a more detailed connection between these two works
values of the critical exponents are observed only very closeust await further investigation.
to the critical point(i.e., at very long length scalgsAs dis- The possibility that continuum and discretized versions of
cussed below, there are reasons to believe that the nonurd-growth equation may exhibit different behavior brings up
versal behavior observed in some of the growth models studhe question of which version is more appropriate for de-
ied in our work is also a consequence of crossover effectscribing real physical systems. While we do not claim to
arising from the proximity of the system to an instability. It have an answer to this question, we wish to point out that it
will be particularly interesting to try to establish formally may be inappropriate to regard the discretized version of a
this suggestive but qualitative analogy between anomalougrowth equation to be less “fundamental” than the con-
dynamicscaling in DT and controlled instability models and tinuum version. Discretized versions of nonlinear growth
crossover scaling induced by dangerous irrelevant variableaquations may actually be closer to the physics of growth
in equilibrium critical phenomena. processes than the continuum equations. This is because all
The observation that the instability in discretized growthgrowth processes are discrete at the atomic scale due to the
equations can be effectively controlled or eliminated alto-presence of the cutoff introduced by the atomic lattice struc-
gether by the introduction of formally irrelevant higher-orderture. A continuum description is obtained under certain as-
terms suggests a practical solution to the numerical problemsumptions about the smoothness of the growth profile. The
encountered in previous studigk?,13 using direct integra- discreteness at the atomic level is incorporated in the con-
tion. If the discretized version of a continuum growth equa-tinuum description through the introduction of a short-
tion belongs in the same universality class as the continuurdistance cutoff. The instability we find suggests that the as-
equation itself, then a direct numerical integration of a versumptions which go into the development of a continuum
sion of the discrete equation which is controlled by the in-description may not be valid under certain circumstances,
troduction of irrelevant higher-order terms should yield val-depending on the values of the bare coupling constants, cut-
ues of global critical exponents appropriate for theoffs, etc. We are not suggesting thaial growth processes
continuum growth equation without running into instability necessarily involve formation of microscopic grooves or pil-
problems. The usefulness of this method is illustrated by théars of atomic sizes which we find in our simulation of vari-
results described in Sec. IV A for models in which the insta-ous discrete growth models. We are, however, pointing out
bility is controlled or eliminated. It is interesting to note that that discretized models of continuum nonlinear growth equa-
the prescription suggested by Newman and Bf2y| for  tions may not necessarily belong to the same universality
getting rid of the instability in the discretized version of the class as the original continuum equations.
noiseless 1D KPZ equation, while differing in details, also  Finally, we discuss the implications of our results on the
amounts to the introduction of terms involving higher pow- origin and nature of multiscaling in models of surface
ers of the gradient of the height variable. growth. It is clear from the results described in Sec. IV that a
The 1D LD equation is special in the sense that the termsontrolled instability is responsible for the multiscaling be-
involving higher powers of the gradient are aflarginally  havior in the models we have studied. In the CKD model
relevantin one dimension. It has been argued in H&0]  described in Sec. IV A, multiscaling is found only if the
that the marginal relevance of these terms may lead to nonsalue of the control parameteris such that the instability is
universal corrections to the critical exponents and also t@resent. Also, multiscaling behavior for such valuesdé
anomalous dynamic scaling where local and global expoebserved only during the time interval over which the insta-
nents differ[14]. The value of the exponer found in our  bility is operative. The same behavior is found for the modi-
simulations of the CKD model and the modified KD model fied KD model described in Sec. IV B. The multiscaling be-
described in Sec. IV B is 0.3550.005, which is close to, but havior exhibited by these models is very similar to that
significantly different from, the value 1/3 expected from observed8-10Q] in the 1D DT model and in other related
renormalization group calculatio$9] on the LD equation. atomistic models of surface growth. As described in Sec.
It is tempting to attribute this difference to the presence oflV B, the behavior of the probability of growth of an isolated
higher powers of the gradient in the controlled KD models.groove as a function of time in the 1D DT model is similar to
However, we do not have any other evidence to back up thithat found in the modified KD model for appropriate values
explanation which, therefore, remains speculative. The leaddf the control parametar. All these results clearly establish
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a connection between multiscaling in growth models and anultiscaling are present in varying degrees in all the atom-
controlled instability of the kind described here. Our studyistic models studied in these papers. It is, therefore, reason-
also leads to the important conclusion that the multiscalingible to conclude that multiscaling in discrete growth models
found in growth models is necessarilyonuniversaland IS a nonuniversal transient behavior, possibly related to the
transientin time. Consider, for example, the CKD model Presence of higher-order terms involving higher powers of
described in Sec. IV A. In this model, the values of the ex-the gradient of the height variable in the continuum equa-
ponentss, z, anda, which describe thelobal properties of tions appropriate for these discrete models_._The S|_m|Iar|ty
the growing interface, are essentially the same for all value@&tween our results for the controlled-instability versions of
of the control parameter (of course, the value of should the KD model(which, by constructior7], provides an ato-

be sufficiently large so that the rms surface widddoes not ~ Mistic version of the LD growth equatiprand those ob-
show any departure from power-law behavior: otherwisef@ined in Refs[8—10 for the 1D DT and related models
these exponents cannot be defindthe models with differ- SU99ests that the latter models are described by the LD equa-
ent values ofc, therefore, belong to the same universality ion With the addition of terms containing higher powers of
class as far as the global behavior is concerned. On the othH}€¢ height gradient with appropriate coefficients. The mar-
hand, the multiscaling behavior, which involviexal quan- ~ 9Inality of these terms in one dimension may provide an
tities because it is manifested in the time dependence of thgXPlanation of why the time period over which multiscaling

moments of the nearest-neighbor height difference and in thi§ ©Pserved in the 1D DT model is very long. Itis interesting
dependence of the correlation functio@g(l,7) on | for to note in this context that recent simulations of the DT

|<&(7), is found to be very different for different values of MCdel in two dimension$28] show that this system also

c. Similar results are obtained for the modified KD model ofexhibits transient multiscaling, but over a much shorter in-

Sec. IV B. In this model also, the global exponents are founaerval.Of time. This may be relatgd to the_ fact that terms
to be insensitive to the value of the control parametebut Involving higher powers of the height gradient are margin-

. . . : - lly irrelevant in the 2D LD equation. Further investigation
he multiscal h I . Th a’y . q : ge
the multiscaling behavior depends crucially on it. These reof the role of these higher-order terms in the behavior of

sults clearly show that multiscaling in these models is a non- h . Id be int i di rant f
universal feature. We also find that all the models studied iff"®Wth equations would be interesting and important for a

our work exhibit multiscaling only over a limited period of complete understanding of the problem.
time. The length of the time interval over which multiscaling
is observed varies greatly from one model to another, but
multiscaling is found to disappear at sufficiently long times  This work is supported by the US-ONR and the NSF-
in all these models. This isota saturation effect because the DMR-MRG. C.D. and J.M.K. would like to thank the Con-
rms surface widthV continues to grow beyond the time at densed Matter Physics Group of the University of Maryland
which multiscaling disappearsee Fig. 16, for exampleA  for hospitality. One of the author§).M.K.) also wishes to
careful look at the simulation data of Ref8~10] shows that thank Hallym Academy of Science, Hallym University for
the feature of nonuniversality and the transient nature oBupport.
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